
PyRoss
Release 1.0.0

Jul 11, 2023

Contents

1 Installation 3

2 Tutorial examples 5

3 API Reference 7

Python Module Index 87

Index 89

i

ii

PyRoss, Release 1.0.0

PyRoss is a numerical library for inference, prediction and non-pharmaceutical interventions in age-structured epi-
demiological compartment models. The library is designed to be model-agnostic and allows the user to define models
using a Python dictionary.

The library supports models formulated stochastically (as chemical master equations) or deterministically (as systems
of differential equations). Inference on pre-defined or user-defined models is performed using model-adapted Gaussian
processes on the epidemiological manifold or its tangent space. This method allows for latent variable inference and
fast computation of the model evidence and the Fisher information matrix. These estimates are convolved with the
instrinsic stochasticty of the dynamics to provide Bayesian forecasts of the progress of the epidemic.

Contents 1

PyRoss, Release 1.0.0

2 Contents

CHAPTER 1

Installation

1.1 From a checkout of PyRoss GitHub repository

This is the recommended way as it downloads a whole suite of examples along with the package.

1.1.1 Install PyRoss and an extended list of dependencies using

>> git clone https://github.com/rajeshrinet/pyross.git
>> cd pyross
>> pip install -r requirements.txt
>> python setup.py install

1.1.2 Install PyRoss and an extended list of dependencies, via Anaconda, in an
environment named pyross:

>> git clone https://github.com/rajeshrinet/pyross.git
>> cd pyross
>> make env
>> conda activate pyross
>> make

1.2 Via pip

Install the latest PyPI version

>> pip install pyross

See also installation instructions and more details in the README.md on GitHub.

3

https://pypi.org/project/pyross
https://github.com/rajeshrinet/pyross/blob/master/README.md

PyRoss, Release 1.0.0

4 Chapter 1. Installation

CHAPTER 2

Tutorial examples

Please have a look at the examples folder for Jupyter notebook examples on GitHub.

5

https://github.com/rajeshrinet/pyross/tree/master/examples

PyRoss, Release 1.0.0

6 Chapter 2. Tutorial examples

CHAPTER 3

API Reference

3.1 Deterministic simulations

Deterministic simulations with compartment models and age structure

A list of methods for deterministic simulations of age-structured compartment models along with link to notebook
examples is given below.

3.1.1 Model

class pyross.deterministic.Model
Generic user-defined epidemic model.

. . .

Parameters

• model_spec (dict) – A dictionary specifying the model. See Examples.

• parameters (dict) – Contains the values for the parameters given in the model specifi-
cation. All parameters can be float if not age-dependent, and np.array(M,) if age-dependent

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(M,)) – Initial number in each compartment and class

• time_dep_param_mapping (python function, optional) – A user-defined
function that takes a dictionary of time-independent parameters and time as an argument,
and returns a dictionary of the parameters of model_spec. Default: Identical mapping of the
dictionary at all times.

Examples

An example of model_spec and parameters for SIR class with a constant influx

7

PyRoss, Release 1.0.0

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"constant" : [["k"]],
"infection" : [["I", "S", "-beta"]]

},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "S", "beta"]]

}
}

>>> parameters = {
'beta': 0.1,
'gamma': 0.1,
'k': 1,

}

model_class_data()

Parameters data (dict) – The object returned by simulate.

Returns

Return type The population of class model_class_key as a time series

simulate()
Simulates a compartment model given initial conditions, choice of integrator and other parameters. Returns
the time series data and parameters in a dict. Internally calls the method ‘simulator’ of CommonMethods

. . .

Parameters

• x0 (np.array or dict) – Initial conditions. If it is an array it should have length
M*(model_dimension-1), where x0[i + j*M] should be the initial value of model class i
of age group j. The removed R class must be left out. If it is a dict then it should have a
key corresponding to each model class, with a 1D array containing the initial condition for
each age group as value. One of the classes may be left out, in which case its initial values
will be inferred from the others.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• Ti (float, optional) – Start time of integrator. The default is 0.

• integrator (TYPE, optional) – Integrator to use either from scipy.integrate or
odespy. The default is ‘odeint’.

• maxNumSteps (int, optional) – maximum number of steps the integrator can take.
The default is 100000.

• **kwargs (kwargs for integrator) –

Returns data – X: output path from integrator, t : time points evaluated at, ‘param’: input param
to integrator.

Return type dict

8 Chapter 3. API Reference

PyRoss, Release 1.0.0

• Link to example notebook

3.1.2 Spp

class pyross.deterministic.Spp
This is a slightly more specific version of the class Model.

Spp is still supported for backward compatibility.

Model class is recommended over Spp for new users.

The Spp class works like Model but infection terms use a single class S

. . .

Parameters

• model_spec (dict) – A dictionary specifying the model. See Examples.

• parameters (dict) – Contains the values for the parameters given in the model specifi-
cation. All parameters can be float if not age-dependent, and np.array(M,) if age-dependent

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(M,)) – Initial number in each compartment and class

• time_dep_param_mapping (python function, optional) – A user-defined
function that takes a dictionary of time-independent parameters and time as an argument,
and returns a dictionary of the parameters of model_spec. Default: Identical mapping of the
dictionary at all times.

Examples

An example of model_spec and parameters for SIR class with a constant influx

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"constant" : [["k"]],
"infection" : [["I", "-beta"]]

},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "beta"]]

}
}

>>> parameters = {
'beta': 0.1,
'gamma': 0.1,
'k': 1,

}

• Link to example notebook

3.1.3 SppQ

class pyross.deterministic.SppQ
User-defined epidemic model with quarantine stage.

3.1. Deterministic simulations 9

https://github.com/rajeshrinet/pyross/blob/master/examples/deterministic/ex01b_Model.ipynb
https://github.com/rajeshrinet/pyross/blob/master/examples/deterministic/ex02-Spp.ipynb

PyRoss, Release 1.0.0

This is a slightly more specific version of the class Model.

SppQ is still supported for backward compatibility.

Model class is recommended over SppQ for new users.

To initialise the SppQ model, . . .

Parameters

• model_spec (dict) – A dictionary specifying the model. See Examples.

• parameters (dict) – Contains the values for the parameters given in the model specifi-
cation. All parameters can be float if not age-dependent, and np.array(M,) if age-dependent

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(M,)) – Initial number in each compartment and class

• time_dep_param_mapping (python function, optional) – A user-defined
function that takes a dictionary of time-independent parameters and time as an argument,
and returns a dictionary of the parameters of model_spec. Default: Identical mapping of the
dictionary at all times.

Examples

An example of model_spec and parameters for SIR class with random testing (without false positives/negatives)
and quarantine

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"infection" : [["I", "-beta"]]
},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "beta"]]

},
"test_pos" : ["p_falsepos", "p_truepos", "p_falsepos"] ,
"test_freq" : ["tf", "tf", "tf"]

}
>>> parameters = {

'beta': 0.1,
'gamma': 0.1,
'p_falsepos': 0
'p_truepos': 1
'tf': 1

}

model_class_data()

Parameters data (dict) – The object returned by simulate.

Returns

Return type The population of class model_class_key as a time series

simulate()
Simulates a compartment model given initial conditions, choice of integrator and other parameters. Returns
the time series data and parameters in a dict. Internally calls the method ‘simulator’ of CommonMethods

. . .

10 Chapter 3. API Reference

PyRoss, Release 1.0.0

Parameters

• x0 (np.array or dict) – Initial conditions. If it is an array it should have length
M*(model_dimension-1), where x0[i + j*M] should be the initial value of model class i
of age group j. The removed R class must be left out. If it is a dict then it should have a
key corresponding to each model class, with a 1D array containing the initial condition for
each age group as value. One of the classes may be left out, in which case its initial values
will be inferred from the others.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• testRate (python function(t)) – The total number of PCR tests performed per
day

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• Ti (float, optional) – Start time of integrator. The default is 0.

• integrator (TYPE, optional) – Integrator to use either from scipy.integrate or
odespy. The default is ‘odeint’.

• maxNumSteps (int, optional) – maximum number of steps the integrator can take.
The default value is 100000.

• **kwargs (kwargs for integrator) –

Returns data – X: output path from integrator, t : time points evaluated at, ‘param’: input param
to integrator.

Return type dict

• Link to example notebook

3.1.4 SIR

class pyross.deterministic.SIR
Susceptible, Infected, Removed (SIR)

• Ia: asymptomatic

• Is: symptomatic

�̇�𝑖 = −𝜆𝑖(𝑡)𝑆𝑖

𝐼𝑎𝑖 = 𝛼𝑖𝜆𝑖(𝑡)𝑆𝑖 − 𝛾𝐼𝑎𝐼𝑎𝑖 ,

𝐼𝑠𝑖 = 𝛼𝑖𝜆𝑖(𝑡)𝑆𝑖 − 𝛾𝐼𝑠𝐼𝑠𝑖 ,

�̇�𝑖 = 𝛾𝐼𝑎𝐼𝑎𝑖 + 𝛾𝐼𝑠𝐼𝑠𝑖 .

𝜆𝑖(𝑡) = 𝛽

𝑀∑︁
𝑗=1

(︂
𝐶𝑎

𝑖𝑗(𝑡)
𝐼𝑎𝑗
𝑁𝑗

+ 𝐶𝑠
𝑖𝑗(𝑡)

𝐼𝑠𝑗
𝑁𝑗

)︂
, 𝑖, 𝑗 = 1, . . .𝑀

. . .

Parameters

• parameters (dict) – Contains the following keys:

alpha: float, np.array (M,) Fraction of infected who are asymptomatic.

3.1. Deterministic simulations 11

https://github.com/rajeshrinet/pyross/blob/master/examples/deterministic/ex08-SppQ.ipynb

PyRoss, Release 1.0.0

beta: float, np.array (M,) Rate of spread of infection.

gIa: float, np.array (M,) Rate of removal from asymptomatic individuals.

gIs: float, np.array (M,) Rate of removal from symptomatic individuals.

fsa: float, np.array (M,) Fraction by which symptomatic individuals do not self-isolate.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(M,)) – Initial number in each compartment and class

Examples

An example of the SIR class

>>> M = 1 # SIR model with no age structure
>>> Ni = 1000*np.ones(M) # only one age group
>>> N = np.sum(Ni) # total population
>>>
>>> beta = 0.2 # Infection rate
>>> gIa = 0.1 # Removal rate of asymptomatic infectives
>>> gIs = 0.1 # Removal rate of symptomatic infectives
>>> alpha = 0 # Fraction of asymptomatic infectives
>>> fsa = 1 # self-isolation of symtomatic infectives
>>>
>>> Ia0 = np.array([0]) # Intial asymptomatic infectives
>>> Is0 = np.array([1]) # Initial symptomatic
>>> R0 = np.array([0]) # No removed individuals initially
>>> S0 = N-(Ia0+Is0+R0) # S + Ia + Is + R = N
>>>
>>> # there is no contact structure
>>> def contactMatrix(t):
>>> return np.identity(M)
>>>
>>> # duration of simulation and data file
>>> Tf = 160; Nt=160;
>>>
>>> # instantiate model
>>> parameters = {'alpha':alpha, 'beta':beta, 'gIa':gIa, 'gIs':gIs,'fsa':fsa}
>>> model = pyross.deterministic.SIR(parameters, M, Ni)
>>>
>>> # simulate model using two possible ways
>>> data1 = model.simulate(S0, Ia0, Is0, contactMatrix, Tf, Nt)
>>> data2 = model.simulator(np.concatenate((S0, Ia0, Is0)), contactMatrix, Tf, Nt)

simulate()
Simulates a compartment model given initial conditions, choice of integrator and other parameters. Returns
the time series data and parameters in a dict. Internally calls the method ‘simulator’ of CommonMethods

. . .

Parameters

• S0 (np.array) – Initial number of susceptables.

• Ia0 (np.array) – Initial number of asymptomatic infectives.

• Is0 (np.array) – Initial number of symptomatic infectives.

12 Chapter 3. API Reference

PyRoss, Release 1.0.0

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• Ti (float, optional) – Start time of integrator. The default is 0.

• integrator (TYPE, optional) – Integrator to use either from scipy.integrate or
odespy. The default is ‘odeint’.

• maxNumSteps (int, optional) – maximum number of steps the integrator can take.
The default is 100000.

• **kwargs (kwargs for integrator) –

Returns X: output path from integrator, t : time points evaluated at, ‘param’: input param to
integrator.

Return type dict

• Link to example notebook

3.1.5 SIkR

class pyross.deterministic.SIkR
Susceptible, Infected, Removed (SIkR). Method of k-stages of I

�̇�𝑖 = −𝜆𝑖(𝑡)𝑆𝑖,

𝐼1𝑖 = 𝑘𝐸𝛾𝐸𝐸
𝑘
𝑖 − 𝑘𝐼𝛾𝐼𝐼

1
𝑖 ,

𝐼𝑘𝑖 = 𝑘𝐼𝛾𝐼𝐼
(𝑘−1)
𝑖 − 𝑘𝐼𝛾𝐼𝐼

𝑘
𝑖 ,

�̇�𝑖 = 𝑘𝐼𝛾𝐼𝐼
𝑘
𝑖 .

𝜆𝑖(𝑡) = 𝛽

𝑀∑︁
𝑗=1

𝑘∑︁
𝑛=1

𝐶𝑖𝑗(𝑡)
𝐼𝑛𝑗
𝑁𝑗

,

. . .

Parameters

• parameters (dict) – Contains the following keys:

beta: float Rate of spread of infection.

gI: float Rate of removal from infectives.

kI: int number of stages of infection.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(M,)) – Initial number in each compartment and class

simulate()
Simulates a compartment model given initial conditions, choice of integrator and other parameters. Returns
the time series data and parameters in a dict. Internally calls the method ‘simulator’ of CommonMethods

. . .

Parameters

3.1. Deterministic simulations 13

https://github.com/rajeshrinet/pyross/blob/master/examples/deterministic/ex01a-SIR.ipynb

PyRoss, Release 1.0.0

• S0 (np.array) – Initial number of susceptables.

• I0 (np.array) – Initial number of infectives.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• Ti (float, optional) – Start time of integrator. The default is 0.

• integrator (TYPE, optional) – Integrator to use either from scipy.integrate or
odespy. The default is ‘odeint’.

• maxNumSteps (int, optional) – maximum number of steps the integrator can take.
The default is 100000.

• **kwargs (kwargs for integrator) –

Returns X: output path from integrator, t : time points evaluated at, ‘param’: input param to
integrator.

Return type dict

• Link to example notebook

3.1.6 SEIR

class pyross.deterministic.SEIR
Susceptible, Exposed, Infected, Removed (SEIR)

• Ia: asymptomatic

• Is: symptomatic

�̇�𝑖 = −𝜆𝑖(𝑡)𝑆𝑖

�̇�𝑖 = 𝜆𝑖(𝑡)𝑆𝑖 − 𝛾𝐸𝐸𝑖

𝐼𝑎𝑖 = 𝛼𝑖𝛾
𝑖
𝐸𝐸𝑖 − 𝛾𝐼𝑎𝐼𝑎𝑖 ,

𝐼𝑠𝑖 = 𝛼𝑖𝛾
𝑖
𝐸𝐸𝑖 − 𝛾𝐼𝑠𝐼𝑠𝑖 ,

�̇�𝑖 = 𝛾𝐼𝑎𝐼𝑎𝑖 + 𝛾𝐼𝑠𝐼𝑠𝑖 .

𝜆𝑖(𝑡) = 𝛽

𝑀∑︁
𝑗=1

(︂
𝐶𝑎

𝑖𝑗(𝑡)
𝐼𝑎𝑗
𝑁𝑗

+ 𝐶𝑠
𝑖𝑗(𝑡)

𝐼𝑠𝑗
𝑁𝑗

)︂
, 𝑖, 𝑗 = 1, . . .𝑀

. . .

Parameters

• parameters (dict) – Contains the following keys:

alpha: float, np.array (M,) Fraction of infected who are asymptomatic.

beta: float, np.array (M,) Rate of spread of infection.

gE: float, np.array (M,) Rate of removal from exposed individuals.

gIa: float, np.array (M,) Rate of removal from asymptomatic individuals.

14 Chapter 3. API Reference

https://github.com/rajeshrinet/pyross/blob/master/examples/deterministic/ex06-SIkR-and-SEkIkR.ipynb

PyRoss, Release 1.0.0

gIs: float, np.array (M,) Rate of removal from symptomatic individuals.

fsa: float, np.array (M,) Fraction by which symptomatic individuals do not self-isolate.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(M,)) – Initial number in each compartment and class

simulate()
Simulates a compartment model given initial conditions, choice of integrator and other parameters. Returns
the time series data and parameters in a dict. Internally calls the method ‘simulator’ of CommonMethods

. . .

Parameters

• S0 (np.array) – Initial number of susceptables.

• E0 (np.array) – Initial number of exposed.

• Ia0 (np.array) – Initial number of asymptomatic infectives.

• Is0 (np.array) – Initial number of symptomatic infectives.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• Ti (float, optional) – Start time of integrator. The default is 0.

• integrator (TYPE, optional) – Integrator to use either from scipy.integrate or
odespy. The default is ‘odeint’.

• maxNumSteps (int, optional) – maximum number of steps the integrator can take.
The default is 100000.

• **kwargs (kwargs for integrator) –

Returns X: output path from integrator, t : time points evaluated at, ‘param’: input param to
integrator.

Return type dict

• Link to example notebook

3.1.7 SEkIkR

class pyross.deterministic.SEkIkR
Susceptible, Exposed, Infected, Removed (SEkIkR). Method of k-stages of E and I

�̇�𝑖 = −𝜆𝑖(𝑡)𝑆𝑖,

�̇�1
𝑖 = 𝜆𝑖(𝑡)𝑆𝑖 − 𝑘𝐸𝛾𝐸𝐸

1
𝑖

�̇�𝑘
𝑖 = 𝑘𝐸𝛾𝐸𝐸

𝑘−1
𝑖 − 𝑘𝐸𝛾𝐸𝐸

𝑘
𝑖

𝐼1𝑖 = 𝑘𝐸𝛾𝐸𝐸
𝑘
𝑖 − 𝑘𝐼𝛾𝐼𝐼

1
𝑖 ,

𝐼𝑘𝑖 = 𝑘𝐼𝛾𝐼𝐼
(𝑘−1)
𝑖 − 𝑘𝐼𝛾𝐼𝐼

𝑘
𝑖 ,

3.1. Deterministic simulations 15

https://github.com/rajeshrinet/pyross/blob/master/examples/deterministic/ex05-SEIR.ipynb

PyRoss, Release 1.0.0

�̇�𝑖 = 𝑘𝐼𝛾𝐼𝐼
𝑘
𝑖 .

𝜆𝑖(𝑡) = 𝛽

𝑀∑︁
𝑗=1

𝑘∑︁
𝑛=1

𝐶𝑖𝑗(𝑡)
𝐼𝑛𝑗
𝑁𝑗

,

. . . :param parameters: Contains the following keys:

beta: float Rate of spread of infection.

gI: float Rate of removal from infected individuals.

gE: float Rate of removal from exposed individuals.

kI: int number of stages of infectives.

kE: int number of stages of exposed.

Parameters

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(M,)) – Initial number in each compartment and class

simulate()
Simulates a compartment model given initial conditions, choice of integrator and other parameters. Returns
the time series data and parameters in a dict. Internally calls the method ‘simulator’ of CommonMethods

. . . :param S0: Initial number of susceptables. :type S0: np.array :param E0: Initial number of exposeds.
:type E0: np.array :param I0: Initial number of infectives. :type I0: np.array :param contactMatrix: The
social contact matrix C_{ij} denotes the

average number of contacts made per day by an individual in class i with an individual in class j

Parameters

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• Ti (float, optional) – Start time of integrator. The default is 0.

• integrator (TYPE, optional) – Integrator to use either from scipy.integrate or
odespy. The default is ‘odeint’.

• maxNumSteps (int, optional) – maximum number of steps the integrator can take.
The default is 100000.

• **kwargs (kwargs for integrator) –

Returns X: output path from integrator, t : time points evaluated at, ‘param’: input param to
integrator.

Return type dict

• Link to example notebook

3.1.8 SEAIRQ

class pyross.deterministic.SEAIRQ
Susceptible, Exposed, Asymptomatic and infected, Infected, Removed, Quarantined (SEAIRQ)

• Ia: asymptomatic

16 Chapter 3. API Reference

https://github.com/rajeshrinet/pyross/blob/master/examples/deterministic/ex06-SIkR-and-SEkIkR.ipynb

PyRoss, Release 1.0.0

• Is: symptomatic

• E: exposed

• A: asymptomatic and infectious

• Q: quarantined

�̇�𝑖 = −𝜆𝑖(𝑡)𝑆𝑖

�̇�𝑖 = 𝜆𝑖(𝑡)𝑆𝑖 − (𝛾𝐸 + 𝜏𝐸)𝐴𝑖

�̇�𝑖 = 𝛾𝐸𝐸𝑖 − (𝛾𝐴 + 𝜏𝐴)𝐴𝑖

𝐼𝑎𝑖 = 𝛼𝑖𝛾𝐴𝐴𝑖 − (𝛾𝐼𝑎 + 𝜏𝐼𝑎)𝐼𝑎𝑖 ,

𝐼𝑠𝑖 = 𝛼𝑖𝛾𝐴𝐴𝑖 − (𝛾𝐼𝑠 + 𝜏𝐼𝑎)𝐼𝑠𝑖 ,

�̇�𝑖 = 𝛾𝐼𝑎𝐼𝑎𝑖 + 𝛾𝐼𝑠𝐼𝑠𝑖 .

�̇�𝑖 = 𝜏𝑆𝑆𝑖 + 𝜏𝐸𝐸𝑖 + 𝜏𝐴𝐴𝑖 + 𝜏𝐼𝑠𝐼𝑠𝑖 + 𝜏𝐼𝑎𝐼𝑎𝑖

𝜆𝑖(𝑡) = 𝛽

𝑀∑︁
𝑗=1

(︂
𝐶𝑎

𝑖𝑗

𝐼𝑎𝑗
𝑁𝑗

+ 𝐶𝑎
𝑖𝑗

𝐴𝑗

𝑁𝑗
+ 𝐶𝑠

𝑖𝑗

𝐼𝑠𝑗
𝑁𝑗

)︂
,

. . .

Parameters

• parameters (dict) – Contains the following keys:

alpha: float Fraction of infected who are asymptomatic.

beta: float, np.array (M,) Rate of spread of infection.

gIa: float, np.array (M,) Rate of removal from asymptomatic individuals.

gIs: float, np.array (M,) Rate of removal from symptomatic individuals.

gE: float, np.array (M,) Rate of removal from exposed individuals.

gA: float, np.array (M,) Rate of removal from activated individuals.

fsa: float, np.array (M,) tE: float, np.array (M,)

testing rate and contact tracing of exposeds

tA: float, np.array (M,) testing rate and contact tracing of activateds

tIa: float, np.array (M,) testing rate and contact tracing of asymptomatics

tIs: float, np.array (M,) testing rate and contact tracing of symptomatics

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(M,)) – Initial number in each compartment and class

simulate()
Simulates a compartment model given initial conditions, choice of integrator and other parameters. Returns
the time series data and parameters in a dict. Internally calls the method ‘simulator’ of CommonMethods

. . .

Parameters

• S0 (np.array) – Initial number of susceptables.

3.1. Deterministic simulations 17

PyRoss, Release 1.0.0

• E0 (np.array) – Initial number of exposeds.

• A0 (np.array) – Initial number of activateds.

• Ia0 (np.array) – Initial number of asymptomatic infectives.

• Is0 (np.array) – Initial number of symptomatic infectives.

• Q0 (np.array) – Initial number of quarantineds.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• Ti (float, optional) – Start time of integrator. The default is 0.

• integrator (TYPE, optional) – Integrator to use either from scipy.integrate or
odespy. The default is ‘odeint’.

• maxNumSteps (int, optional) – maximum number of steps the integrator can take.
The default is 100000.

• **kwargs (kwargs for integrator) –

Returns

data – contains the following keys:

• X : output path from integrator

• t : time points evaluated at,

• ’param’: input param to integrator.

Return type dict

• Link to example notebook

3.1.9 CommonMethods

class pyross.deterministic.CommonMethods
Parent class used for all classes listed below. It includes: a) Integrators used by various deterministic models
listed below. b) Method to get time series of S, etc by passing a dict of data. c) Method to set the contactMatrix
array, CM

A()

Parameters data (Data dict) –

Returns A

Return type Activated population time series

E()

Parameters data (Data dict) –

Returns E

Return type Exposed population time series

I()

18 Chapter 3. API Reference

https://github.com/rajeshrinet/pyross/blob/master/examples/deterministic/ex07-SEAIRQ.ipynb

PyRoss, Release 1.0.0

Parameters data (Data dict) –

Returns Ia

Return type Asymptomatics population time series

Ia()

Parameters data (Data dict) –

Returns Ia

Return type Asymptomatics population time series

Is()

Parameters data (Data dict) –

Returns Is

Return type symptomatics population time series

R()

Parameters data (Data dict) –

Returns R

Return type Removed population time series

S()

Parameters data (Data dict) –

Returns S

Return type Susceptible population time series

Sx()

Parameters data (Data dict) –

Returns

Return type Generic compartment Sx

simulator()
Simulates a compartment model given initial conditions, choice of integrator and other parameters. Returns
the time series data and parameters in a dict.

. . .

Parameters

• x0 (np.array) – Initial state vector (number of compartment values). An array of size
M*(model_dimension-1), where x0[i+j*M] should be the initial value of model class i of
age group j. The removed R class must be left out. If Ni is dynamical, then the last M
points store Ni.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• Ti (float, optional) – Start time of integrator. The default is 0.

3.1. Deterministic simulations 19

PyRoss, Release 1.0.0

• integrator (TYPE, optional) – Integrator to use either from scipy.integrate or
odespy. The default is ‘odeint’.

• maxNumSteps (int, optional) – maximum number of steps the integrator can take.
The default is 100000.

• **kwargs (kwargs for integrator) –

Returns data – X: output path from integrator, t : time points evaluated at, ‘param’: input param
to integrator.

Return type dict

3.2 Stochastic simulations

Stochastic simulations with compartment models and age structure. Has Gillespie and tau-leaping implemented.

A list of methods for stochastic simulations of age-structured compartment models along with link to notebook exam-
ples is given below.

3.2.1 Model

class pyross.stochastic.Model
Generic user-defined epidemic model.

. . .

Parameters

• model_spec (dict) – A dictionary specifying the model. See Examples.

• parameters (dict) – A dictionary containing the model parameters. All parameters can
be float if not age-dependent, and np.array(M,) if age-dependent. An optional element with
the key ‘seed’ may be supplied as a seed for the pseudo-random number generator.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(3*M,)) – Initial number in each compartment and class

• time_dep_param_mapping (python function, optional) – A user-defined
function that takes a dictionary of time-independent parameters and time as an argument,
and returns a dictionary of the parameters of model_spec. Default: Identical mapping of the
dictionary at all times.

Examples

An example of model_spec and parameters for SIR class with a constant influx

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"constant" : [["k"]],
"infection" : [["I", "S", "-beta"]]

},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "S", "beta"]]

(continues on next page)

20 Chapter 3. API Reference

PyRoss, Release 1.0.0

(continued from previous page)

}
}

>>> parameters = {
'beta': 0.1,
'gamma': 0.1,
'seed': 1234,
'k': 1,

}

model_class_data()

Parameters data (dict) – The object returned by simulate.

Returns

Return type The population of class model_class_key as a time series

simulate()
Performs the Stochastic Simulation Algorithm (SSA)

Parameters

• x0 (np.array) – Initial condition.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• method (str, optional) – SSA to use, either ‘gillespie’ or ‘tau_leaping’. The de-
fault is ‘gillespie’.

• nc (TYPE, optional) –

• epsilon (float, optional) – The acceptable relative change of the rates during
each tau-leaping step, as defined in Cao et al:

https://doi.org/10.1063/1.2159468

The default is 0.03

• tau_update_frequency (TYPE, optional) –

Returns X: output path from integrator, t : time points evaluated at, ‘event_occured’ , ‘param’:
input param to integrator.

Return type dict

• Link to example notebook

3.2.2 Spp

class pyross.stochastic.Spp
This is a slightly more specific version of the class Model.

Spp is still supported for backward compatibility.

Model class is recommended over Spp for new users.

The Spp class works like Model but infection terms use a single class S

3.2. Stochastic simulations 21

https://doi.org/10.1063/1.2159468
https://github.com/rajeshrinet/pyross/blob/master/examples/stochastic/ex01b_Model.ipynb

PyRoss, Release 1.0.0

. . .

Parameters

• model_spec (dict) – A dictionary specifying the model. See Examples.

• parameters (dict) – A dictionary containing the model parameters. All parameters can
be float if not age-dependent, and np.array(M,) if age-dependent. An optional element with
the key ‘seed’ may be supplied as a seed for the pseudo-random number generator.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(3*M,)) – Initial number in each compartment and class

• time_dep_param_mapping (python function, optional) – A user-defined
function that takes a dictionary of time-independent parameters and time as an argument,
and returns a dictionary of the parameters of model_spec. Default: Identical mapping of the
dictionary at all times.

Examples

An example of model_spec and parameters for SIR class with a constant influx

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"constant" : [["k"]],
"infection" : [["I", "-beta"]]

},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "beta"]]

}
}

>>> parameters = {
'beta': 0.1,
'gamma': 0.1,
'seed': 1234,
'k': 1,

}

• Link to example notebook

3.2.3 SppQ

class pyross.stochastic.SppQ
User-defined epidemic model with quarantine stage.

This is a slightly more specific version of the class Model.

SppQ is still supported for backward compatibility.

Model class is recommended over SppQ for new users.

To initialise the SppQ model,

. . .

Parameters

22 Chapter 3. API Reference

https://github.com/rajeshrinet/pyross/blob/master/examples/stochastic/ex02-Spp.ipynb

PyRoss, Release 1.0.0

• model_spec (dict) – A dictionary specifying the model. See Examples.

• parameters (dict) – A dictionary containing the model parameters. All parameters can
be float if not age-dependent, and np.array(M,) if age-dependent. An optional element with
the key ‘seed’ may be supplied as a seed for the pseudo-random number generator.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(3*M,)) – Initial number in each compartment and class

• time_dep_param_mapping (python function, optional) – A user-defined
function that takes a dictionary of time-independent parameters and time as an argument,
and returns a dictionary of the parameters of model_spec. Default: Identical mapping of the
dictionary at all times.

Examples

An example of model_spec and parameters for SIR class with random testing (without false positives/negatives)
and quarantine

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"infection" : [["I", "-beta"]]
},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "beta"]]

},
"test_pos" : ["p_falsepos", "p_truepos", "p_falsepos"] ,
"test_freq" : ["tf", "tf", "tf"]

}
>>> parameters = {

'beta': 0.1,
'gamma': 0.1,
'seed': 1234,
'p_falsepos': 0,
'p_truepos': 1,
'tf': 1

}

model_class_data()

Parameters data (dict) – The object returned by simulate.

Returns

Return type The population of class model_class_key as a time series

simulate()
Performs the Stochastic Simulation Algorithm (SSA)

Parameters

• x0 (np.array) – Initial condition.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

3.2. Stochastic simulations 23

PyRoss, Release 1.0.0

• testRate (python function(t)) – The total number of PCR tests performed per
day

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• method (str, optional) – SSA to use, either ‘gillespie’ or ‘tau_leaping’. The de-
fault is ‘gillespie’.

• nc (TYPE, optional) –

• epsilon (float, optional) – The acceptable relative change of the rates during
each tau-leaping step, as defined in Cao et al:

https://doi.org/10.1063/1.2159468

The default is 0.03

• tau_update_frequency (TYPE, optional) –

Returns X: output path from integrator, t : time points evaluated at, ‘event_occured’ , ‘param’:
input param to integrator.

Return type dict

• Link to example notebook

3.2.4 SIR

class pyross.stochastic.SIR
Susceptible, Infected, Removed (SIR)

• Ia: asymptomatic

• Is: symptomatic

. . .

Parameters

• parameters (dict) – Contains the following keys:

alpha: float, np.array (M,) fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gIa: float rate of removal from asymptomatic individuals.

gIs: float rate of removal from symptomatic individuals.

fsa: float Fraction by which symptomatic individuals do not self-isolate.

seed: long seed for pseudo-random number generator (optional).

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(3*M,)) – Initial number in each compartment and class

rate_matrix:
Calculates the rate constant for each reaction channel.

simulate:
Performs stochastic numerical integration.

simulate()
Performs the Stochastic Simulation Algorithm (SSA)

24 Chapter 3. API Reference

https://doi.org/10.1063/1.2159468
https://github.com/rajeshrinet/pyross/blob/master/examples/stochastic/ex08-Spp.ipynb

PyRoss, Release 1.0.0

Parameters

• S0 (np.array) – Initial number of susceptables.

• Ia0 (np.array) – Initial number of asymptomatic infectives.

• Is0 (np.array) – Initial number of symptomatic infectives.

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• method (str, optional) – SSA to use, either ‘gillespie’ or ‘tau_leaping’. The de-
fault is ‘gillespie’.

• nc (TYPE, optional) –

• epsilon (float, optional) – The acceptable relative change of the rates during
each tau-leaping step, as defined in Cao et al:

https://doi.org/10.1063/1.2159468.

The default is 0.03

• tau_update_frequency (TYPE, optional) –

Returns X: output path from integrator, t : time points evaluated at, ‘event_occured’ , ‘param’:
input param to integrator.

Return type dict

• Link to example notebook

3.2.5 SIkR

class pyross.stochastic.SIkR
Susceptible, Infected, Removed (SIkR). Method of k-stages of I

. . .

Parameters

• parameters (dict) – Contains the following keys:

beta: float rate of spread of infection.

gI: float rate of removal from infectives.

fsa: float Fraction by which symptomatic individuals do not self-isolate.

kI: int number of stages of infection.

seed: long seed for pseudo-random number generator (optional).

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array((kI + 1)*M,)) – Initial number in each compartment and class

• Link to example notebook

3.2. Stochastic simulations 25

https://doi.org/10.1063/1.2159468
https://github.com/rajeshrinet/pyross/blob/master/examples/stochastic/ex01-SIR.ipynb
https://github.com/rajeshrinet/pyross/blob/master/examples/stochastic/ex03-SIkR.ipynb

PyRoss, Release 1.0.0

3.2.6 SEIR

class pyross.stochastic.SEIR
Susceptible, Exposed, Infected, Removed (SEIR)

• Ia: asymptomatic

• Is: symptomatic

• E: exposed

. . .

Parameters

• parameters (dict) – Contains the following keys:

alpha: float, np.array (M,) fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gIa: float rate of removal from asymptomatic individuals.

gIs: float rate of removal from symptomatic individuals.

fsa: float Fraction by which symptomatic individuals do not self-isolate.

gE: float rate of removal from exposed individuals.

seed: long seed for pseudo-random number generator (optional).

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(4*M,)) – Initial number in each compartment and class

• Link to example notebook

3.2.7 SEAIRQ

class pyross.stochastic.SEAIRQ
Susceptible, Exposed, Asymptomatic and infected, Infected, Removed, Quarantined (SEAIRQ)

• Ia: asymptomatic

• Is: symptomatic

• E: exposed

• A: asymptomatic and infectious

• Q: quarantined

. . .

Parameters

• parameters (dict) – Contains the following keys:

alpha: float, np.array(M,) fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gIa: float rate of removal from asymptomatic individuals.

gIs: float rate of removal from symptomatic individuals.

gE: float rate of removal from exposed individuals.

26 Chapter 3. API Reference

https://github.com/rajeshrinet/pyross/blob/master/examples/stochastic/ex04-SEIR.ipynb

PyRoss, Release 1.0.0

gA: float rate of removal from activated individuals.

fsa: float Fraction by which symptomatic individuals do not self-isolate.

tE [float] testing rate and contact tracing of exposeds

tA [float] testing rate and contact tracing of activateds

tIa: float testing rate and contact tracing of asymptomatics

tIs: float testing rate and contact tracing of symptomatics

seed: long seed for pseudo-random number generator (optional).

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(6*M,)) – Initial number in each compartment and class

• Link to example notebook

3.2.8 SEAIRQ_testing

class pyross.stochastic.SEAIRQ_testing
Susceptible, Exposed, Asymptomatic and infected, Infected, Removed, Quarantined (SEAIRQ)

• E: exposed

• A: Asymptomatic and infectious

• Ia: asymptomatic

• Is: symptomatic

• Q: quarantined

. . .

Parameters

• parameters (dict) – Contains the following keys:

alpha: float, np.array(M,) fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gIa: float rate of removal from asymptomatic individuals.

gIs: float rate of removal from symptomatic individuals.

gE: float rate of removal from exposed individuals.

gA: float rate of removal from activated individuals.

fsa: float Fraction by which symptomatic individuals do not self-isolate.

ars: float fraction of population admissible for random and symptomatic tests

kapE: float fraction of positive tests for exposed individuals

seed: long seed for pseudo-random number generator (optional).

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(6*M,)) – Initial number in each compartment and class

• testRate (python function(t)) – number of tests per day and age group

3.2. Stochastic simulations 27

https://github.com/rajeshrinet/pyross/blob/master/examples/stochastic/ex05-SEAIRQ.ipynb

PyRoss, Release 1.0.0

3.2.9 stochastic_integration

class pyross.stochastic.stochastic_integration

Integrators used by stochastic models: Gillespie and tau-leaping

A()

Parameters data (Data dict) –

Returns A

Return type Activated population time series

E()

Parameters data (Data dict) –

Returns E

Return type Exposed population time series

I()

Parameters data (Data dict) –

Returns Ia

Return type Asymptomatics population time series

Ia()

Parameters data (Data dict) –

Returns Ia

Return type Asymptomatics population time series

Is()

Parameters data (Data dict) –

Returns Is

Return type symptomatics population time series

R()

Parameters data (Data dict) –

Returns R

Return type Removed population time series

S()

Parameters data (Data dict) –

Returns S

Return type Susceptible population time series

Sx()

Parameters data (Data dict) –

Returns

Return type Generic compartment Sx

check_for_event()

28 Chapter 3. API Reference

PyRoss, Release 1.0.0

simulate_gillespie()
Performs the stochastic simulation using the Gillespie algorithm.

1. Rates for each reaction channel r_i calculated from current state.

2. The timestep tau is chosen randomly from an exponential distribution P ~ e^(-W tau).

3. A single reaction occurs with probablity proportional to its fractional rate constant r_i/W.

4. The state is updated to reflect this reaction occuring and time is propagated forward by tau

Stops if population becomes too small.

Parameters

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

Returns

• t_arr (np.array(Nf,)) – Array of time points at which the integrator was evaluated.

• out_arr (np.array) – Output path from integrator.

simulate_tau_leaping()
Tau leaping algorithm for producing stochastically correct trajectories Based on Cao et al (2006): https:
//doi.org/10.1063/1.2159468 This method can run much faster than the Gillespie algorithm

1. Rates for each reaction channel r_i calculated from current state.

2. Timestep tau chosen such that Delta r_i < epsilon Sum r_i

3. Number of reactions that occur in channel i ~Poisson(r_i tau)

4. Update state by this amount

Parameters

• contactMatrix (python function(t)) – The social contact matrix C_{ij} de-
notes the average number of contacts made per day by an individual in class i with an
individual in class j

• Tf (float) – Final time of integrator

• Nf (Int) – Number of time points to evaluate.

• nc (optional) – The default is 30

• epsilon (float, optional) – The acceptable relative change of the rates during
each tau-leaping step, as defined in Cao et al. The default is 0.03

• tau_update_frequency (optional) –

Returns

• t_arr (np.array(Nf,)) – Array of time points at which the integrator was evaluated.

• out_arr (np.array) – Output path from integrator.

3.2. Stochastic simulations 29

https://doi.org/10.1063/1.2159468
https://doi.org/10.1063/1.2159468

PyRoss, Release 1.0.0

3.3 Hybrid simulations

Hybrid simulation scheme using a combination of stochastic and deterministic schemes.

3.3.1 SIR

class pyross.hybrid.SIR
Susceptible, Infected, Removed (SIR) Ia: asymptomatic Is: symptomatic

. . .

Parameters

• parameters (dict) –

Contains the following keys:

alpha: float, np.array (M,) fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gIa: float rate of removal from asymptomatic individuals.

gIs: float rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(3*M,)) – Initial number in each compartment and class

simulate()

3.4 Bayesian inference

Inference for age structured compartment models using the diffusion approximation (via the van Kampen expansion).
See this paper for more details on the method.

There are two ways to do inference: manifold method (sec 3.3 in the report) and tangent space method (sec 3.4 in the
report). In various degrees of less robust but fast to more robust but slow:

• tangent space method.

• manifold method with few internal steps and fast integration method (det_method = RK2, lyapunov_method =
euler).

• manifold method with large number of internel steps and robust integration method (solve_ivp from scipy li-
brary).

Methods for full data
infer Infers epidemiological and control parameters given all information.
infer_mcmc Explore the posterior distribution given all information.
infer_nested_sampling Compute the model evidence (and generate posterior samples) given all information.
obtain_minus_log_p Computes -log(p) of a fully observed trajectory.
compute_hessian Computes the Hessian of -log(p).
nested_sampling_inference Compute the log-evidence and weighted samples.

30 Chapter 3. API Reference

https://arxiv.org/abs/2010.11783

PyRoss, Release 1.0.0

Methods for partial data
latent_infer Infers epidemiological and control parameters and initial conditions.
latent_infer_mcmc Explore the posterior distribution.
latent_infer_nested_sampling Compute the model evidence (and generate posterior samples).
minus_logp_red Computes -log(p) of a partially observed trajectory.
compute_hessian_latent Computes the Hessian of -log(p).
nested_sampling_latent_inference Compute the log-evidence and weighted samples.

Sensitivity analysis
FIM Computes the Fisher Information Matrix of the stochastic model.
FIM_det Computes the Fisher Information Matrix of the deterministic model.
sensitivity Computes the normalized sensitivity measure

Helper function
integrate A wrapper around ‘simulate’ in pyross.deterministic.
set_params Sets parameters.
set_det_method Sets the integration method of the deterministic equation
set_lyapunov_method Sets the integration method of the Lyapunov equation
set_det_model Sets the internal deterministic model
set_contact_matrix Sets the contact matrix
fill_params_dict Fills and returns a parameter dictionary
get_mean_inits Constructs full initial conditions from the prior dict

The functions are documented under the parent class SIR_type.

3.4.1 SIR_type

class pyross.inference.SIR_type
Parent class for inference for all SIR-type classes listed below

All subclasses use the same functions to perform inference, which are documented below.

FIM()
Computes the Fisher Information Matrix (FIM) for the MAP estimates of a stochastic SIR type model.

Parameters

• x (2d numpy.array) – Observed trajectory (number of data points x (age groups *
model classes))

• Tf (float) – Total time of the trajectory

• infer_result (dict) – Dictionary returned by latent_infer

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the

3.4. Bayesian inference 31

PyRoss, Release 1.0.0

function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• eps (float or numpy.array, optional) – Step size for numerical differentia-
tion of the process mean and its full covariance matrix with respect to the parameters. Must
be either a scalar, or an array of length len(infer_result[‘flat_params’]). If not specified,

eps = 100*infer_result['flat_params']

*numpy.divide(numpy.spacing(infer_result['log_likelihood']),
infer_result['log_likelihood'])**(0.25)

is used. It is recommended to use a step-size greater or equal to eps. Decreasing the step
size too small can result in round-off error.

• inter_steps (int, optional) – Intermediate steps for interpolation between ob-
servations for the deterministic forward Euler integration. A higher number of interme-
diate steps will improve the accuracy of the result, but will make computations slower.
Setting inter_steps=0 will fall back to the method accessible via det_method for the de-
terministic integration. We have found that forward Euler is generally slower, but more
stable for derivatives with respect to parameters than the variable step size integrators used
elsewhere in pyross. Default is 100.

Returns FIM – The Fisher Information Matrix

Return type 2d numpy.array

FIM_det()
Computes the Fisher Information Matrix (FIM) for the MAP estimates of a deterministic (ODE based,
including a constant measurement error) SIR type model.

Parameters

• x (2d numpy.array) – Observed trajectory (number of data points x (age groups *
model classes))

• Tf (float) – Total time of the trajectory

• infer_result (dict) – Dictionary returned by latent_infer

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• eps (float or numpy.array, optional) – Step size for numerical differentia-
tion of the process mean and its full covariance matrix with respect to the parameters. Must

32 Chapter 3. API Reference

PyRoss, Release 1.0.0

be either a scalar, or an array of length len(infer_result[‘flat_params’]). If not specified,

eps = 100*infer_result['flat_params']

*numpy.divide(numpy.spacing(infer_result['log_likelihood']),
infer_result['log_likelihood'])**(0.25)

is used. It is recommended to use a step-size greater or equal to eps. Decreasing the step
size too small can result in round-off error.

• measurement_error (float, optional) – Standard deviation of measurements
(uniform and independent Gaussian measurement error assumed). Default is 1e-2.

• inter_steps (int, optional) – Intermediate steps for interpolation between ob-
servations for the deterministic forward Euler integration. A higher number of interme-
diate steps will improve the accuracy of the result, but will make computations slower.
Setting inter_steps=0 will fall back to the method accessible via det_method for the de-
terministic integration. We have found that forward Euler is generally slower, but more
stable for derivatives with respect to parameters than the variable step size integrators used
elsewhere in pyross. Default is 100.

Returns FIM – The Fisher Information Matrix

Return type 2d numpy.array

evidence_laplace()
Compute the evidence using a Laplace approximation at the MAP estimate.

Parameters

• x (2d numpy.array) – Observed trajectory (number of data points x (age groups *
model classes))

• Tf (float) – Total time of the trajectory

• infer_result (dict) – Dictionary returned by latent_infer

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• eps (float or numpy.array, optional) – Step size for finite differences com-
putation of the hessian with respect to the parameters. Must be either a scalar, or an array
of length len(infer_result[‘flat_params’]). If not specified,

eps = 100*infer_result['flat_params']

*numpy.divide(numpy.spacing(infer_result['log_likelihood']),
infer_result['log_likelihood'])**(0.25)

3.4. Bayesian inference 33

PyRoss, Release 1.0.0

is used. For fd_method=”central” it is recommended to use a step-size greater or equal to
eps. Decreasing the step size too small can result in round-off error.

• fd_method (str, optional) – The type of finite-difference scheme used to com-
pute the hessian, supports “forward” and “central”. Default is “central”.

• inter_steps (int, optional) – Only used if tangent=False. Intermediate steps
for interpolation between observations for the deterministic forward Euler integration. A
higher number of intermediate steps will improve the accuracy of the result, but will make
computations slower. Setting inter_steps=0 will fall back to the method accessible via
det_method for the deterministic integration. We have found that forward Euler is gen-
erally slower, but more stable for derivatives with respect to parameters than the variable
step size integrators used elsewhere in pyross. Default is 10.

Returns log_evidence – The log-evidence computed via Laplace approximation at the MAP
estimate.

Return type float

fill_params_dict()
Returns a full dictionary for epidemiological parameters with some changed values

Parameters

• keys (list of String) – A list of names of parameters to be changed.

• params (numpy.array of list) – An array of the same size as keys for the updated
value.

• return_additional_params (boolean, optional (default =
False)) – Handling of parameters that are not model parameters (e.g. control
parameters). False: raise exception, True: return second dictionary with other parameters

Returns full_parameters – A dictionary of epidemiological parameters. For parameter names
specified in keys, set the values to be the ones in params; for the others, use the values stored
in the class.

Return type dict

get_mean_inits()
Construct full initial conditions from the prior dict

Parameters

• init_priors (dict) – A dictionary for priors for initial conditions. Same as the
init_priors passed to latent_infer. In this function, only takes the mean.

• obs0 (numpy.array) – Observed initial conditions.

• fltr0 (numpy.array) – Filter for the observed initial conditions.

Returns x0 – Full initial conditions.

Return type numpy.array

hessian()
Computes the Hessian matrix for the MAP estimates of an SIR type model.

Parameters

• x (2d numpy.array) – Observed trajectory (number of data points x (age groups *
model classes))

• Tf (float) – Total time of the trajectory

34 Chapter 3. API Reference

PyRoss, Release 1.0.0

• infer_result (dict) – Dictionary returned by latent_infer

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• eps (float or numpy.array, optional) – Step size for finite differences com-
putation of the hessian with respect to the parameters. Must be either a scalar, or an array
of length len(infer_result[‘flat_params’]). If not specified,

eps = 100*infer_result['flat_params']

*numpy.divide(numpy.spacing(infer_result['log_likelihood']),
infer_result['log_likelihood'])**(0.25)

is used. For fd_method=”central” it is recommended to use a step-size greater or equal to
eps. Decreasing the step size too small can result in round-off error.

• fd_method (str, optional) – The type of finite-difference scheme used to com-
pute the hessian, supports “forward” and “central”. Default is “central”.

• inter_steps (int, optional) – Only used if tangent=False. Intermediate steps
for interpolation between observations for the deterministic forward Euler integration. A
higher number of intermediate steps will improve the accuracy of the result, but will make
computations slower. Setting inter_steps=0 will fall back to the method accessible via
det_method for the deterministic integration. We have found that forward Euler is gener-
ally slower, but sometimes more stable for derivatives with respect to parameters than the
variable step size integrators used elsewhere in pyross. Default is 0.

Returns hess – The Hessian matrix

Return type 2d numpy.array

infer()
Compute the maximum a-posteriori (MAP) estimate for all desired parameters, including control parame-
ters, for an SIR type model with fully observed classes. If generator is specified, the lockdown is modelled
by scaling the contact matrices for contact at work, school, and other (but not home). This function infers
the scaling parameters (can be age dependent) assuming that full data on all classes is available (with latent
variables, use latent_infer).

Parameters

• x (2d numpy.array) – Observed trajectory (number of data points x (age groups *
model classes))

• Tf (float) – Total time of the trajectory

3.4. Bayesian inference 35

PyRoss, Release 1.0.0

• prior_dict (dict) – A dictionary containing priors for parameters (can include both
model and intervention parameters). See examples.

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
false.

• verbose (bool, optional) – Set to True to see intermediate outputs from the opti-
mizer.

• ftol (double) – Relative tolerance of logp

• global_max_iter (int, optional) – Number of global optimisations performed.

• local_max_iter (int, optional) – Number of local optimisation performed.

• global_atol (float) – The absolute tolerance for global optimisation.

• enable_global (bool, optional) – Set to True to enable global optimisation.

• enable_local (bool, optional) – Set to True to enable local optimisation.

• cma_processes (int, optional) – Number of parallel processes used for global
optimisation.

• cma_population (int, optional) – The number of samples used in each step of
the CMA algorithm.

• cma_random_seed (int (between 0 and 2**32-1)) – Random seed for the
optimisation algorithms. By default it is generated from numpy.random.randint.

Returns

output_dict – Dictionary of MAP estimates, containing the following keys for users:

params_dict: dict Dictionary for MAP estimates of the model parameters.

control_params_dict: dict Dictionary for MAP estimates of the control parameters (if re-
quested).

-logp: float Value of -logp at MAP.

Return type dict

Note: This function combines the functionality of infer_parameters and infer_control, which will be
deprecated. To infer model parameters only, specify a fixed contactMatrix function. To infer control
parameters only, specify a generator and do not specify priors for model parameters.

36 Chapter 3. API Reference

PyRoss, Release 1.0.0

Examples

An example of prior_dict to set priors for alpha and beta, where alpha is age dependent and we want to
infer its scale parameters rather than each component individually. The prior distribution is assumed to be
log-normal with the specified mean and standard deviation.

>>> prior_dict = {
'alpha':{

'mean': [0.5, 0.2],
'infer_scale': True,
'scale_factor_std': 1,
'scale_factor_bounds': [0.1, 10],
'prior_fun': 'truncnorm'

},
'beta':{

'mean': 0.02,
'std': 0.1,
'bounds': [1e-4, 1],
'prior_fun': 'lognorm'

}
}

infer_control()
Compute the maximum a-posteriori (MAP) estimate of the change of control parameters for a SIR type
model in lockdown.

Parameters infer (see) –

Returns

output_dict – Dictionary of MAP estimates, containing the following keys for users:

map_dict: dict Dictionary for MAP estimates of the control parameters.

-logp: float Value of -logp at MAP.

Return type dict

Note: This function just calls infer with the specified generator, will be deprecated.

infer_mcmc()
Sample the posterior distribution of the epidemiological parameters using ensemble MCMC.

Parameters

• x (2d numpy.array) – Observed trajectory (number of data points x (age groups *
model classes))

• Tf (float) – Total time of the trajectory

• prior_dict (dict) – A dictionary containing priors for parameters (can include both
model and intervention parameters). See examples.

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

3.4. Bayesian inference 37

PyRoss, Release 1.0.0

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• verbose (bool, optional) – Set to True to see a progress bar for the sample gen-
eration. Default is False.

• sampler (emcee.EnsembleSampler, optional) – Set to instance of the sam-
pler (as returned by this function) to continue running the MCMC chains. Default is None
(i.e. run a new chain).

• nwalkers (int, optional) – The number of chains in the ensemble (should be at
least 2*dim). Default is 2*dim.

• walker_pos (np.array, optional) – The initial position of the walkers. If not
specified, it samples random positions from the prior.

• nsamples (int, optional) – The number of samples per walker. Default is 1000.

• nprocesses (int, optional) – The number of processes used to compute the like-
lihood for the walkers, needs pathos. Default is the number of cpu cores if pathos is
available, otherwise 1.

Returns sampler – This function returns the interal state of the sampler. To look at the chain
of the internal flattened parameters, run sampler.get_chain(). Use this to judge whether the
chain has sufficiently converged. Either rerun mcmc_inference(. . . , sampler=sampler) to
continue the chain or mcmc_inference_process_result(. . .) to process the result.

Return type emcee.EnsembleSampler

Examples

For the structure of prior_dict, see the documentation of infer. To start sampling the posterior, run for
example

>>> sampler = estimator.infer_mcmc(x, Tf, prior_dict,
→˓contactMatrix=contactMatrix, verbose=True)

To judge the convergence of this chain, we can look at the trace plot of all the chains (for a moderate
number of dimensions dim)

>>> fig, axes = plt.subplots(dim, sharex=True)
>>> samples = sampler.get_chain()
>>> for i in range(dim):

ax = axes[i]
ax.plot(samples[:, :, i], "k", alpha=0.3)
ax.set_xlim(0, len(samples))

>>> axes[-1].set_xlabel("step number");

For more detailed convergence metrics, see the documentation of emcee. To continue running this chain,
we can call this function again with the sampler as argument

38 Chapter 3. API Reference

PyRoss, Release 1.0.0

>>> sampler = estimator.infer_mcmc(x, Tf, prior_dict,
→˓contactMatrix=contactMatrix, verbose=True, sampler=sampler)

This procudes 1000 additional samples in each chain. To process the results, call in-
fer_mcmc_process_result.

infer_mcmc_process_result()
Take the sampler generated by pyross.inference.infer_mcmc and produce output dictionaries for further use
in the pyross framework. See pyross.inference.infer_mcmc for additional description of parameters.

Parameters

• sampler (emcee.EnsembleSampler) – Output of pyross.inference.infer_mcmc.

• prior_dict (dict) –

• contactMatrix (callable, optional) –

• generator (pyross.contactMatrix, optional) –

• intervention_fun (callable, optional) –

• flat (bool, optional) – This decides whether to return the samples as for each
chain separately (False) or as as a combined list (True). Default is True.

• discard (int, optional) – The number of initial samples to discard in each chain
(to account for burn-in). Default is 0.

• thin (int, optional) – Thin out the chain by taking only the n-tn element in each
chain. Default is 1 (no thinning).

• **catchall_kwargs (dict) – Catched further provided arguments and ignores them.

Returns output_samples – The processed posterior samples.

Return type list of dict (if flat=True), or list of list of dict (if flat=False)

infer_nested_sampling()
Compute the log-evidence and weighted samples of the a-posteriori distribution of the parameters of a SIR
type model using nested sampling as implemented in the dynesty Python package. This function assumes
that full data on all classes is available.

Parameters

• x (2d numpy.array) – Observed trajectory (number of data points x (age groups *
model classes))

• Tf (float) – Total time of the trajectory

• prior_dict (dict) – A dictionary containing priors for parameters (can include both
model and intervention parameters). See examples.

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.

3.4. Bayesian inference 39

PyRoss, Release 1.0.0

The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
false.

• verbose (bool, optional) – Set to True to see intermediate outputs from the nested
sampling procedure.

• nprocesses (int, optional) – The number of processes used for parallel evalua-
tion of the likelihood.

• queue_size (int, optional) – Size of internal queue of likelihood values, default
is nprocesses if multiprocessing is used.

• maxiter (int, optional) – The maximum number of iterations. Default is no limit.

• maxcall (int, optional) – The maximum number of calls to the likelihood func-
tion. Default no limit.

• dlogz (float, optional) – The iteration terminates if the estimated contribution of
the remaining prior volume to the total evidence falls below this threshold. Default value
is 1e-3 * (nlive - 1) + 0.01 if add_live==True, 0.01 otherwise.

• n_effective (float, optional) – The iteration terminates if the number of ef-
fective posterior samples reaches this values. Default is no limit.

• add_live (bool, optional) – Determines whether to add the remaining set of live
points to the set of samples. Default is True.

• sampler (dynesty.NestedSampler, optional) – Continue running an in-
stance of a nested sampler until the termination criteria are met.

• **dynesty_args – Arguments passed through to the construction of the
dynesty.NestedSampler constructor. Relevant entries are (this is not comprehensive, for
details see the documentation of dynesty):

nlive: int, optional The number of live points. Default is 500.

bound: {‘none’, ‘single’, ‘multi’, ‘balls’, ‘cubes’}, optional Method used to approxi-
mately bound the prior using the current set of live points. Default is ‘multi’.

sample: {‘auto’, ‘unif’, ‘rwalk’, ‘rstagger’, ‘slice’, ‘rslice’, ‘hslice’, callable}, optional
Method used to sample uniformly within the likelihood constraint, conditioned on the
provided bounds.

Returns sampler – The state of the sampler after termination of the nested sampling run.

Return type dynesty.NestedSampler

infer_nested_sampling_process_result()
Take the sampler generated by pyross.inference.infer_nested_sampling and produce output dictionaries
for further use in the pyross framework. See pyross.inference.infer_nested_sampling for description of
parameters.

Parameters

• sampler (dynesty.NestedSampler) – The output of py-
ross.inference.infer_nested_sampling.

• prior_dict (dict) –

• contactMatrix (callable, optional) –

40 Chapter 3. API Reference

PyRoss, Release 1.0.0

• generator (pyross.contactMatrix, optional) –

• intervention_fun (callable, optional) –

• **catchall_kwargs (dict) – Catched further provided arguments and ignores them.

Returns

• result (dynesty.Result) – The result of the nested sampling iteration. Relevant entries
include:

result.logz: list The progression of log-evidence estimates, use result.logz[-1] for the fi-
nal estimate.

• output_samples (list) – The processed weighted posterior samples.

infer_parameters()
Infers the MAP estimates for epidemiological parameters

Parameters infer (see) –

Returns

output – Contains the following keys for users:

map_dict: dict A dictionary for MAPs. Keys are the names of the parameters and the cor-
responding values are its MAP estimates.

-logp: float The value of -logp at MAP.

Return type dict

Note: This function just calls infer with a fixed contactMatrix function, will be deprecated.

integrate()
An light weight integrate method similar to simulate in pyross.deterministic

Parameters

• x0 (np.array) – Initial state of the given model

• t1 (float) – Initial time of integrator

• t2 (float) – Final time of integrator

• steps (int) – Number of time steps for numerical integrator evaluation.

• max_step (int, optional) – The maximum allowed step size of the integrator.

Returns sol – The state of the system evaulated at the time point specified. Only used if
det_method is set to ‘solve_ivp’.

Return type np.array

latent_FIM()
Computes the Fisher Information Matrix (FIM) of the stochastic model for the initial conditions and all
desired parameters, including control parameters, for a SIR type model with partially observed classes.
The unobserved classes are treated as latent variables.

Parameters

• obs (np.array) – The partially observed trajectory.

• fltr (2d np.array) – The filter for the observation such that 𝐹𝑖𝑗𝑥𝑗(𝑡) = 𝑜𝑏𝑠𝑖(𝑡)

• Tf (float) – Total time of the trajectory

3.4. Bayesian inference 41

PyRoss, Release 1.0.0

• infer_result (dict) – Dictionary returned by latent_infer

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• eps (float or numpy.array, optional) – Step size for numerical differentia-
tion of the process mean and its full covariance matrix with respect to the parameters. Must
be either a scalar, or an array of length len(infer_result[‘flat_params’]). If not specified,

eps = 100*infer_result['flat_params']

*numpy.divide(numpy.spacing(infer_result['log_likelihood']),
infer_result['log_likelihood'])**(0.25)

is used. It is recommended to use a step-size greater or equal to eps. Decreasing the step
size too small can result in round-off error.

• inter_steps (int, optional) – Intermediate steps between observations for the
deterministic forward Euler integration. A higher number of intermediate steps will im-
prove the accuracy of the result, but will make computations slower. Setting inter_steps=0
will fall back to the method accessible via det_method for the deterministic integration.
We have found that forward Euler is generally slower, but more stable for derivatives with
respect to parameters than the variable step size integrators used elsewhere in pyross. De-
fault is 100.

Returns FIM – The Fisher Information Matrix

Return type 2d numpy.array

latent_FIM_det()
Computes the Fisher Information Matrix (FIM) of the deterministic model (ODE based, including a con-
stant measurement error) for the initial conditions and all desired parameters, including control parameters,
for a SIR type model with partially observed classes. The unobserved classes are treated as latent variables.

Parameters

• obs (np.array) – The partially observed trajectory.

• fltr (2d np.array) – The filter for the observation such that 𝐹𝑖𝑗𝑥𝑗(𝑡) = 𝑜𝑏𝑠𝑖(𝑡)

• Tf (float) – Total time of the trajectory

• infer_result (dict) – Dictionary returned by latent_infer

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

42 Chapter 3. API Reference

PyRoss, Release 1.0.0

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• eps (float or numpy.array, optional) – Step size for numerical differentia-
tion of the process mean and its full covariance matrix with respect to the parameters. Must
be either a scalar, or an array of length len(infer_result[‘flat_params’]). If not specified,

eps = 100*infer_result['flat_params']

*numpy.divide(numpy.spacing(infer_result['log_likelihood']),
infer_result['log_likelihood'])**(0.25)

is used. It is recommended to use a step-size greater or equal to eps. Decreasing the step
size too small can result in round-off error.

• measurement_error (float, optional) – Standard deviation of measurements
(uniform and independent Gaussian measurement error assumed). Default is 1e-2.

• inter_steps (int, optional) – Intermediate steps between observations for the
deterministic forward Euler integration. A higher number of intermediate steps will im-
prove the accuracy of the result, but will make computations slower. Setting inter_steps=0
will fall back to the method accessible via det_method for the deterministic integration.
We have found that forward Euler is generally slower, but more stable for derivatives with
respect to parameters than the variable step size integrators used elsewhere in pyross. De-
fault is 100.

Returns FIM_det – The Fisher Information Matrix

Return type 2d numpy.array

latent_evidence_laplace()
Compute the evidence using a Laplace approximation at the MAP estimate for a SIR type model with
partially observed classes. The unobserved classes are treated as latent variables.

Parameters

• obs (np.array) – The partially observed trajectory.

• fltr (2d np.array) – The filter for the observation such that 𝐹𝑖𝑗𝑥𝑗(𝑡) = 𝑜𝑏𝑠𝑖(𝑡)

• Tf (float) – Total time of the trajectory

• infer_result (dict) – Dictionary returned by latent_infer

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.

3.4. Bayesian inference 43

PyRoss, Release 1.0.0

The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• eps (float or numpy.array, optional) – Step size for finite differences com-
putation of the hessian with respect to the parameters. Must be either a scalar, or an array
of length len(infer_result[‘flat_params’]). If not specified,

eps = 100*infer_result['flat_params']

*numpy.divide(numpy.spacing(infer_result['log_likelihood']),
infer_result['log_likelihood'])**(0.25)

is used. For fd_method=”central” it is recommended to use a step-size greater or equal to
eps. Decreasing the step size too small can result in round-off error.

• fd_method (str, optional) – The type of finite-difference scheme used to com-
pute the hessian, supports “forward” and “central”. Default is “central”.

• inter_steps (int, optional) – Intermediate steps between observations for the
deterministic forward Euler integration. A higher number of intermediate steps will im-
prove the accuracy of the result, but will make computations slower. Setting inter_steps=0
will fall back to the method accessible via det_method for the deterministic integration.
We have found that forward Euler is generally slower, but more stable for derivatives with
respect to parameters than the variable step size integrators used elsewhere in pyross. De-
fault is 100.

Returns log_evidence – The log-evidence computed via Laplace approximation at the MAP
estimate.

Return type float

latent_hessian()
Computes the Hessian matrix for the initial conditions and all desired parameters, including control pa-
rameters, for a SIR type model with partially observed classes. The unobserved classes are treated as latent
variables.

Parameters

• obs (np.array) – The partially observed trajectory.

• fltr (2d np.array) – The filter for the observation such that 𝐹𝑖𝑗𝑥𝑗(𝑡) = 𝑜𝑏𝑠𝑖(𝑡)

• Tf (float) – Total time of the trajectory

• infer_result (dict) – Dictionary returned by latent_infer

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.

44 Chapter 3. API Reference

PyRoss, Release 1.0.0

The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• eps (float or numpy.array, optional) – Step size for finite differences com-
putation of the hessian with respect to the parameters. Must be either a scalar, or an array
of length len(infer_result[‘flat_params’]). If not specified,

eps = 100*infer_result['flat_params']

*numpy.divide(numpy.spacing(infer_result['log_likelihood
→˓']),

infer_result['log_likelihood'])**(0.25)

is used. For fd_method=”central” it is recommended to use a step-size greater or equal to
eps. Decreasing the step size too small can result in round-off error.

• fd_method (str, optional) – The type of finite-difference scheme used to com-
pute the hessian, supports “forward” and “central”. Default is “central”.

• inter_steps (int, optional) – Intermediate steps between observations for the
deterministic forward Euler integration. A higher number of intermediate steps will im-
prove the accuracy of the result, but will make computations slower. Setting inter_steps=0
will fall back to the method accessible via det_method for the deterministic integration. We
have found that forward Euler is generally slower, but sometimes more stable for deriva-
tives with respect to parameters than the variable step size integrators used elsewhere in
pyross. Default is 0.

Returns hess – The Hessian matrix

Return type 2d numpy.array

latent_infer()
Compute the maximum a-posteriori (MAP) estimate for the initial conditions and all desired parameters,
including control parameters, for a SIR type model with partially observed classes. The unobserved classes
are treated as latent variables.

Parameters

• obs (np.array) – The partially observed trajectory.

• fltr (2d np.array) – The filter for the observation such that 𝐹𝑖𝑗𝑥𝑗(𝑡) = 𝑜𝑏𝑠𝑖(𝑡)

• Tf (float) – Total time of the trajectory

• param_priors (dict) – A dictionary that specifies priors for parameters (including
control parameters, if desired). See infer for further explanations.

• init_priors (dict) – A dictionary for priors for initial conditions. See below for
examples

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

3.4. Bayesian inference 45

PyRoss, Release 1.0.0

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
false.

• verbose (bool, optional) – Set to True to see intermediate outputs from the opti-
mizer.

• ftol (double) – Relative tolerance of logp

• global_max_iter (int, optional) – Number of global optimisations performed.

• local_max_iter (int, optional) – Number of local optimisation performed.

• local_initital_step (optional, float or np.array) – Initial step size
for the local optimiser. If scalar, relative to the initial guess. Default: Deterined by final
state of global optimiser, or, if enable_global=False, 0.01

• global_atol (float) – The absolute tolerance for global minimisation.

• enable_global (bool, optional) – Set to True to enable global optimisation.

• enable_local (bool, optional) – Set to True to enable local optimisation.

• cma_processes (int, optional) – Number of parallel processes used for global
optimisation.

• cma_population (int, optional) – The number of samples used in each step of
the CMA algorithm.

• cma_random_seed (int (between 0 and 2**32-1)) – Random seed for the
optimisation algorithms. By default it is generated from numpy.random.randint.

• objective (string, optional) – Objective for the minimisation. ‘likeli-
hood’ (default), ‘least_square’ (least squares fit w.r.t. absolute compartment values),
‘least_squares_diff’ (least squares fit w.r.t. time-differences of compartment values)

• alternative_guess (np.array, optional) – Alternative initial quess, differ-
ent form the mean of the prior. Array in the same format as ‘flat_params’ in the result
dictionary of a previous optimisation run.

• use_mode_as_guess (bool, optional) – Initialise optimisation with mode in-
stead of mean of the prior. Makes a difference for lognormal distributions.

• tmp_file (optional, string) – If specified, name of a file to store the temporary
best estimate of the global optimiser (as backup or for inspection) as numpy array file

• load_backup_file (optional, string) – If specified, name of a file to restore
the the state of the global optimiser

Returns

output_dict – A dictionary containing the following keys for users:

x0: np.array MAP estimates for the initial conditions

params_dict: dict dictionary for MAP estimates for model parameters

control_params_dict: dict dictionary for MAP estimates for control parameters (if re-
quested)

46 Chapter 3. API Reference

PyRoss, Release 1.0.0

-logp: float Value of -logp at MAP.

Return type dict

Note: This function combines the functionality of latent_infer_parameters and latent_infer_control,
which will be deprecated. To infer model parameters only, specify a fixed contactMatrix function. To
infer control parameters only, specify a generator and do not specify priors for model parameters.

Examples

Here we list three examples, one for inferring all initial conditions along the fastest growing linear mode,
one for inferring the initial conditions individually and a mixed one.

First, suppose we only observe Is out of (S, Ia, Is) and we wish to infer all compartmental values of S and
Ia independently. For two age groups with population [2500, 7500],

>>> init_priors = {
'independent':{

'fltr': [True, True, True, True, False, False],
'mean': [2400, 7400, 50, 50],
'std': [200, 200, 200, 200],
'bounds': [[2000, 2500], [7000, 7500], [0, 400], [0, 400]]

}
}

In the ‘fltr’ entry, we need a boolean array indicating which components of the full x0 = [S0[0], S0[1],
Ia0[0], Ia0[1], Is0[0], Ia0[1]] array we are inferring. By setting fltr = [True, True, True, True, False, False],
the inference algorithm will know that we are inferring all components of S0 and Ia0 but not Is0. Similar
to inference for parameter values, we also assume a log-normal distribution for the priors for the initial
conditions.

Next, if we are happy to assume that all our initial conditions lie along the fastest growing linear mode and
we will only infer the coefficient of the mode, the init_priors dict would be,

>>> init_priors = {
'lin_mode_coeff':{

'fltr': [True, True, True, True, False, False],
'mean': 100,
'std': 100,
'bounds': [1, 1000]

}
}

Note that the ‘fltr’ entry is still the same as before because we still only want to infer S and Ia, and the
initial conditions for Is is fixed by the observation.

Finally, if we want to do a mixture of both (useful when some compartments have aligned with the fastest
growing mode but others haven’t), we need to set the init_priors to be,

>>> init_priors = {
'lin_mode_coeff': {

'fltr': [True, True, False, False, False, False],
'mean': 100,
'std': 100,
'bounds': [1, 1000]

(continues on next page)

3.4. Bayesian inference 47

PyRoss, Release 1.0.0

(continued from previous page)

},
'independent':{

'fltr': [False, False, True, True, False, False],
'mean': [50, 50],
'std': [200, 200],
'bounds': [0, 400], [0, 400]

}
}

latent_infer_control()
Compute the maximum a-posteriori (MAP) estimate of the change of control parameters for a SIR type
model in lockdown with partially observed classes.

Parameters latent_infer (see) –

Returns

output_dict – A dictionary containing the following keys for users:

map_params_dict: dict dictionary for MAP estimates for control parameters

map_x0: np.array MAP estimates for the initial conditions

-logp: float Value of -logp at MAP.

Return type dict

Note: This function just calls latent_infer (with the specified generator), will be deprecated.

latent_infer_mcmc()
Sample the posterior distribution of the initial conditions and all desired parameters, including control
parameters, using ensemble MCMC. This requires the optional dependency emcee.

Parameters

• obs (2d numpy.array) – The observed trajectories with reduced number of variables
(number of data points, (age groups * observed model classes))

• fltr (2d numpy.array) – A matrix of shape (no. observed variables, no. total vari-
ables), such that obs_{ti} = fltr_{ij} * X_{tj}

• Tf (float) – Total time of the trajectory

• contactMatrix (callable) – A function that returns the contact matrix at time t
(input).

• param_priors (dict) – A dictionary for priors for the model parameters. See la-
tent_infer_parameters for further explanations.

• init_priors (dict) – A dictionary for priors for the initial conditions. See la-
tent_infer_parameters for further explanations.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• verbose (bool, optional) – Set to True to see a progress bar for the sample gen-
eration. Default is False.

• sampler (emcee.EnsembleSampler, optional) – Set to instance of the sam-
pler (as returned by this function) to continue running the MCMC chains. Default is None
(i.e. run a new chain).

48 Chapter 3. API Reference

PyRoss, Release 1.0.0

• nwalkers (int, optional) – The number of chains in the ensemble (should be at
least 2*dim). Default is 2*dim.

• walker_pos (np.array, optional) – The initial position of the walkers. If not
specified, the function samples random positions from the prior.

• nsamples (int, optional) – The number of samples per walker. Default is 1000.

• nprocesses (int, optional) – The number of processes used to compute the like-
lihood for the walkers, needs pathos for values > 1. Default is the number of cpu cores if
pathos is available, otherwise 1.

Returns sampler – This function returns the state of the sampler. To look at the chain of the in-
ternal flattened parameters, run sampler.get_chain(). Use this to judge whether the chain has
sufficiently converged. Either rerun latent_infer_mcmc(. . . , sampler=sampler) to continue
the chain or latent_infer_mcmc_process_result(. . .) to process the result.

Return type emcee.EnsembleSampler

Examples

For the structure of the model input parameters, in particular param_priors, init_priors, see the documen-
tation of latent_infer. To start sampling the posterior, run for example

>>> sampler = estimator.latent_infer_mcmc(obs, fltr, Tf, param_priors, init_
→˓priors, contactMatrix=contactMatrix,

verbose=True)

To judge the convergence of this chain, we can look at the trace plot of all the chains (for a moderate
number of dimensions dim)

>>> fig, axes = plt.subplots(dim, sharex=True)
>>> samples = sampler.get_chain()
>>> for i in range(dim):

ax = axes[i]
ax.plot(samples[:, :, i], "k", alpha=0.3)
ax.set_xlim(0, len(samples))

>>> axes[-1].set_xlabel("step number");

For more detailed convergence metrics, see the documentation of emcee. To continue running this chain,
we can call this function again with the sampler as argument

>>> sampler = estimator.latent_infer_mcmc(obs, fltr, Tf, param_priors, init_
→˓priors, contactMatrix=contactMatrix,

verbose=True, sampler=sampler)

This procudes 1000 additional samples in each chain. To process the results, call py-
ross.inference.latent_infer_mcmc_process_result.

latent_infer_mcmc_process_result()
Take the sampler generated by pyross.inference.latent_infer_mcmc and produce output dictionaries for
further use in the pyross framework.

Parameters

• sampler (emcee.EnsembleSampler) – Output of mcmc_latent_inference.

• obs (2d numpy.array) –

• fltr (2d numpy.array) –

3.4. Bayesian inference 49

PyRoss, Release 1.0.0

• param_priors (dict) –

• init_priors (dict) –

• contactMatrix (callable, optional) –

• generator (pyross.contactMatrix, optional) –

• intervention_fun (callable, optional) –

• flat (bool, optional) – This decides whether to return the samples as for each
chain separately (False) or as as a combined list (True). Default is True.

• discard (int, optional) – The number of initial samples to discard in each chain
(to account for burn-in). Default is 0.

• thin (int, optional) – Thin out the chain by taking only the n-tn element in each
chain. Default is 1 (no thinning).

• **catchall_kwargs (dict) – Catches further provided arguments and ignores them.

Returns output_samples – The processed posterior samples.

Return type list of dict (if flat=True), or list of list of dict (if flat=False)

latent_infer_nested_sampling()
Compute the log-evidence and weighted samples for the initial conditions and all desired parameters,
including control parameters, for a SIR type model with partially observed classes. This function uses
nested sampling as implemented in the dynesty Python package.

Parameters

• obs (2d numpy.array) – The observed trajectories with reduced number of variables
(number of data points, (age groups * observed model classes))

• fltr (2d numpy.array) – A matrix of shape (no. observed variables, no. total vari-
ables), such that obs_{ti} = fltr_{ij} * X_{tj}

• Tf (float) – Total time of the trajectory

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input).

• param_priors (dict) – A dictionary for priors for the model parameters. See la-
tent_infer for further explanations.

• init_priors (dict) – A dictionary for priors for the initial conditions. See la-
tent_infer for further explanations.

• contactMatrix – A function that returns the contact matrix at time t (input). If spec-
ified, control parameters are not inferred. Either a contactMatrix or a generator must be
specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

50 Chapter 3. API Reference

PyRoss, Release 1.0.0

• tangent (bool, optional) – Set to True to do inference in tangent space (might be
less robust but a lot faster). Default is False.

• verbose (bool, optional) – Set to True to see intermediate outputs from the nested
sampling procedure.

• nprocesses (int, optional) – The number of processes used for parallel evalua-
tion of the likelihood.

• queue_size (int, optional) – Size of internal queue of likelihood values, default
is nprocesses if multiprocessing is used.

• maxiter (int, optional) – The maximum number of iterations. Default is no limit.

• maxcall (int, optional) – The maximum number of calls to the likelihood func-
tion. Default no limit.

• dlogz (float, optional) – The iteration terminates if the estimated contribution of
the remaining prior volume to the total evidence falls below this threshold. Default value
is 1e-3 * (nlive - 1) + 0.01 if add_live==True, 0.01 otherwise.

• n_effective (float, optional) – The iteration terminates if the number of ef-
fective posterior samples reaches this values. Default is no limit.

• add_live (bool, optional) – Determines whether to add the remaining set of live
points to the set of samples. Default is True.

• sampler (dynesty.NestedSampler, optional) – Continue running an in-
stance of a nested sampler until the termination criteria are met.

• **dynesty_args – Arguments passed through to the construction of the
dynesty.NestedSampler constructor. Relevant entries are (this is not comprehensive, for
details see the documentation of dynesty):

nlive: int, optional The number of live points. Default is 500.

bound: {‘none’, ‘single’, ‘multi’, ‘balls’, ‘cubes’}, optional Method used to approxi-
mately bound the prior using the current set of live points. Default is ‘multi’.

sample: {‘auto’, ‘unif’, ‘rwalk’, ‘rstagger’, ‘slice’, ‘rslice’, ‘hslice’, callable}, optional
Method used to sample uniformly within the likelihood constraint, conditioned on the
provided bounds.

Returns sampler – The state of the sampler after termination of the nested sampling run.

Return type dynesty.NestedSampler

latent_infer_nested_sampling_process_result()
Take the sampler generated by pyross.inference.latent_infer_nested_sampling and produce output dictio-
naries for further use in the pyross framework. See there for additional description of parameters.

Parameters

• sampler (dynesty.NestedSampler) – Output of py-
ross.inference.latent_infer_nested_sampling.

• obs (2d numpy.array) –

• fltr (2d numpy.array) –

• param_priors (dict) –

• init_priors (dict) –

• contactMatrix (callable, optional) –

3.4. Bayesian inference 51

PyRoss, Release 1.0.0

• generator (pyross.contactMatrix, optional) –

• intervention_fun (callable, optional) –

• **catchall_kwargs (dict) – Catches further provided arguments and ignores them.

Returns

• result (dynesty.Result) – The result of the nested sampling iteration. Relevant entries
include:

result.logz: list The progression of log-evidence estimates, use result.logz[-1] for the fi-
nal estimate.

• output_samples (list) – The processed weighted posterior samples.

latent_infer_parameters()
Compute the maximum a-posteriori (MAP) estimate of the parameters and the initial conditions of a SIR
type model when the classes are only partially observed. Unobserved classes are treated as latent variables.

Parameters latent_infer (see) –

Returns

output – Contains the following keys for users:

map_params_dict: dict A dictionary for the MAP estimates for parameter values. The
keys are the names of the parameters.

map_x0: np.array The MAP estimate for the initial conditions.

-logp: float The value of -logp at MAP.

Return type dict

Note: This function just calls latent_infer (with fixed contactMatrix), will be deprecated.

latent_param_slice()
Samples the posterior and prior along a one-dimensional slice of the parameter space

Parameters

• obs (np.array) – The partially observed trajectory.

• fltr (2d np.array) – The filter for the observation such that 𝐹𝑖𝑗𝑥𝑗(𝑡) = 𝑜𝑏𝑠𝑖(𝑡)

• Tf (float) – The total time of the trajectory.

• infer_result (dict) – Dictionary returned by latent_infer

• pos (np.array) – Position in parameter space around which the parameter slice is
computed

• direction (np.array) – Direction in parameter space in which the parameter slice
is computed

• scale (np.array) – Values by which the direction vector is scaled. Points evaluated
are pos + scale * direction

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

52 Chapter 3. API Reference

PyRoss, Release 1.0.0

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• inter_steps (int, optional) – Intermediate steps between observations for the
deterministic forward Euler integration. A higher number of intermediate steps will im-
prove the accuracy of the result, but will make computations slower. Setting inter_steps=0
will fall back to the method accessible via det_method for the deterministic integration.

• nprocesses (int, optional) – The number of processes used to compute the like-
lihood for the walkers, needs pathos. Default is the number of cpu cores if pathos is
available, otherwise 1.

Returns

• posterior (np.array) – posterior evaluated along the 1d slice

• prior (np.array) – prior evaluated along the 1d slice

mcmc_inference()
Sample the posterior distribution of the epidemiological parameters using ensemble MCMC.

Note: This function has been replaced by pyross.inference.infer_mcmc and will be deleted in a future
version of pyross. See there for a documentation of the function parameters.

mcmc_inference_process_result()
Take the sampler generated by mcmc_inference and produce output dictionaries for further use in the
pyross framework.

Note: This function has been replaced by pyross.inference.infer_mcmc_process_result and will be deleted
in a future version of pyross. See there for a documentation of the function parameters.

mcmc_latent_inference()
Sample the posterior distribution of the epidemiological parameters using ensemble MCMC.

Note: This function has been replaced by pyross.inference.latent_infer_mcmc and will be deleted in a
future version of pyross. See there for a documentation of the function parameters.

mcmc_latent_inference_process_result()
Take the sampler generated by mcmc_latent_inference and produce output dictionaries for further use in
the pyross framework.

Note: This function has been replaced by pyross.inference.latent_infer_mcmc_process_results and will

3.4. Bayesian inference 53

PyRoss, Release 1.0.0

be deleted in a future version of pyross. See there for a documentation of the function parameters.

minus_logp_red()
Computes -logp for a latent trajectory

Parameters

• parameters (dict) – A dictionary of parameter values, same as the ones required for
initialisation.

• x0 (numpy.array) – Initial conditions

• obs (numpy.array) – The observed trajectory without the initial datapoint

• fltr (boolean sequence or array) – True for observed and False for unob-
served. e.g. if only Is is known for SIR with one age group, fltr = [False, False, True]

• Tf (float) – The total time of the trajectory

• contactMatrix (callable) – A function that returns the contact matrix at time t
(input).

• tangent (bool, optional) – Set to True to do inference in tangent space (might be
less robust but a lot faster). Default is False.

Returns minus_logp – -log(p) for the observed trajectory with the given parameters and initial
conditions

Return type float

nested_sampling_inference()
Run nested sampling for model parameters without latent variables.

Note: This function has been replaced by pyross.inference.infer_nested_sampling and will be deleted in
a future version of pyross. See there for a documentation of the function parameters.

nested_sampling_inference_process_result()
Take the sampler generated by nested_sampling_inference and produce output dictionaries for further use
in the pyross framework.

Note: This function has been replaced by pyross.inference.infer_nested_sampling_process_result and
will be deleted in a future version of pyross. See there for a documentation of the function parameters.

nested_sampling_latent_inference()
Compute the log-evidence and weighted samples of the a-posteriori distribution of the parameters of a SIR
type model with latent variables using nested sampling as implemented in the dynesty Python package.

Note: This function has been replaced by pyross.inference.latent_infer_nested_sampling and will be
deleted in a future version of pyross. See there for a documentation of the function parameters.

nested_sampling_latent_inference_process_result()
Take the sampler generated by nested_sampling_latent_inference and produce output dictionaries for fur-
ther use in the pyross framework.

54 Chapter 3. API Reference

PyRoss, Release 1.0.0

Note: This function has been replaced by pyross.inference.latent_infer_nested_sampling_process_result
and will be deleted in a future version of pyross. See there for a documentation of the function parameters.

obtain_minus_log_p()
Computes -logp of a full trajectory :param parameters: A dictionary for the model parameters. :type
parameters: dict :param x: The full trajectory. :type x: np.array :param Tf: The time duration of the
trajectory. :type Tf: float :param contactMatrix: A function that takes time (t) as an argument and returns
the contactMatrix :type contactMatrix: callable :param tangent: Set to True to use tangent space inference.
:type tangent: bool, optional

Returns minus_logp – Value of -logp

Return type float

robustness()
Robustness analysis in a two-dimensional slice of the parameter space, revealing neutral spaces as in
https://doi.org/10.1073/pnas.1015814108.

Parameters

• FIM (2d numpy.array) – Fisher Information matrix of a stochastic model

• FIM_det (2d numpy.array) – Fisher information matrix of the corresponding deter-
ministic model

• infer_result (dict) – Dictionary returned by latent_infer

• param_pos_1 (int) – Position of ‘parameter 1’ in map_dict[‘flat_map’] for x-axis

• param_pos_2 (int) – Position of ‘parameter 2’ in map_dict[‘flat_map’] for y-axis

• range_1 (float) – Symmetric interval around parameter 1 for which robustness will
be analysed. Absolute interval: ‘parameter 1’ +/- range_1

• range_2 (float) – Symmetric interval around parameter 2 for which robustness will
be analysed. Absolute interval: ‘parameter 2’ +/- range_2

• resolution_1 (int) – Resolution of the meshgrid in x direction.

• resolution_2 (int) – Resolution of the meshgrid in y direction. Default is resolu-
tion_2=resolution_1.

Returns

• ff (2d numpy.array) – shape=resolution_1 x resolution_2, meshgrid for x-axis

• ss (2d numpy.array) – shape=resolution_1 x resolution_2, meshgrid for y-axis

• Z_sto (2d numpy.array) – shape=resolution_1 x resolution_2, expected quadratic coeffi-
cient in the Taylor expansion of the likelihood of the stochastic model

• Z_det (2d numpy.array) – shape=resolution_1 x resolution_2, expected quadratic coeffi-
cient in the Taylor expansion of the likelihood of the deterministic model

Examples

>>> from matplotlib import pyplot as plt
>>> from matplotlib import cm
>>>
>>> # positions 0 and 1 of infer_result['flat_params'] correspond to a scale
→˓parameter for alpha, and beta, respectively. (continues on next page)

3.4. Bayesian inference 55

https://doi.org/10.1073/pnas.1015814108

PyRoss, Release 1.0.0

(continued from previous page)

>>> ff, ss, Z_sto, Z_det = estimator.robustness(FIM, FIM_det, map_dict, 0, 1,
→˓0.5, 0.01, 20)
>>> cmap = plt.cm.PuBu_r
>>> levels=11
>>> colors='black'
>>>
>>> c = plt.contourf(ff, ss, Z_sto, cmap=cmap, levels=levels) # heat map for
→˓the stochastic coefficient
>>> plt.contour(ff, ss, Z_sto, colors='black', levels=levels, linewidths=0.25)
>>> plt.contour(ff, ss, Z_det, colors=colors, levels=levels) # contour plot
→˓for the deterministic model
>>> plt.plot(infer_result['flat_params'][0], infer_result['flat_params'][1],
→˓'o',

color="#A60628", markersize=6) # the MAP estimate
>>> plt.colorbar(c)
>>> plt.xlabel(r'$lpha$ scale', fontsize=20, labelpad=10)
>>> plt.ylabel(r'eta', fontsize=20, labelpad=10)
>>> plt.show()

sample_gaussian()
Sample N samples of the parameters from the Gaussian centered at the MAP estimate with specified
covariance cov.

Parameters

• N (int) – The number of samples.

• map_estimate (dict) – The MAP estimate, e.g. as computed by infer-
ence.infer_parameters.

• cov (np.array) – The covariance matrix of the flat parameters.

• x (np.array) – The full trajectory.

• Tf (float) – The total time of the trajectory.

• contactMatrix (callable) – A function that returns the contact matrix at time t
(input).

• prior_dict (dict) – A dictionary containing priors. See examples.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

Returns samples – N samples of the Gaussian distribution.

Return type list of dict

sample_gaussian_latent()
Sample N samples of the parameters from the Gaussian centered at the MAP estimate with specified
covariance cov.

Parameters

• N (int) – The number of samples.

• obs (np.array) – The partially observed trajectory.

• fltr (2d np.array) – The filter for the observation such that 𝐹𝑖𝑗𝑥𝑗(𝑡) = 𝑜𝑏𝑠𝑖(𝑡)

• Tf (float) – The total time of the trajectory.

• infer_result (dict) – Dictionary returned by latent_infer

56 Chapter 3. API Reference

PyRoss, Release 1.0.0

• invcov (np.array) – The inverse covariance matrix of the flat parameters.

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• allow_negative (bool, optional) – Allow negative values of the sample pa-
rameters. If False, samples with negative paramters values are discarded and additional
samples are drawn until the specified number N of samples is reached. Default is False.

• inter_steps (int, optional) – Intermediate steps between observations for the
deterministic forward Euler integration. A higher number of intermediate steps will im-
prove the accuracy of the result, but will make computations slower. Setting inter_steps=0
will fall back to the method accessible via det_method for the deterministic integration.

• nprocesses (int, optional) – The number of processes used to compute the like-
lihood for the walkers, needs pathos. Default is the number of cpu cores if pathos is
available, otherwise 1.

Returns

• samples (list of np.array’s) – N samples of the Gaussian distribution (flat parameters).

• posterior (np.array) – posterior evaluated along the 1d slice

• prior (np.array) – prior evaluated along the 1d slice

sample_latent()
Samples the posterior and prior

Parameters

• obs (np.array) – The partially observed trajectory.

• fltr (2d np.array) – The filter for the observation such that 𝐹𝑖𝑗𝑥𝑗(𝑡) = 𝑜𝑏𝑠𝑖(𝑡)

• Tf (float) – The total time of the trajectory.

• infer_result (dict) – Dictionary returned by latent_infer

• flat_params_list (list of np.array's) – Parameters for which the prior and
posterior are sampled

• contactMatrix (callable, optional) – A function that returns the contact ma-
trix at time t (input). If specified, control parameters are not inferred. Either a contactMa-
trix or a generator must be specified.

• generator (pyross.contactMatrix, optional) – A pyross.contactMatrix
object that generates a contact matrix function with specified lockdown parameters. Either
a contactMatrix or a generator must be specified.

3.4. Bayesian inference 57

PyRoss, Release 1.0.0

• intervention_fun (callable, optional) – The calling signature is interven-
tion_func(t, **kwargs), where t is time and kwargs are other keyword arguments for the
function. The function must return (aW, aS, aO), where aW, aS and aO are (2, M) arrays.
The contact matrices are then rescaled as 𝑎𝑊 [0]𝑖𝐶𝑊𝑖𝑗𝑎𝑊 [1]𝑗 etc. If not set, assume in-
tervention that’s constant in time. See contactMatrix.constant_contactMatrix for details
on the keyword parameters.

• tangent (bool, optional) – Set to True to use tangent space inference. Default is
False.

• inter_steps (int, optional) – Intermediate steps between observations for the
deterministic forward Euler integration. A higher number of intermediate steps will im-
prove the accuracy of the result, but will make computations slower. Setting inter_steps=0
will fall back to the method accessible via det_method for the deterministic integration.

• nprocesses (int, optional) – The number of processes used to compute the like-
lihood for the walkers, needs pathos. Default is the number of cpu cores if pathos is
available, otherwise 1.

Returns

• posterior (np.array) – posterior evaluated along the 1d slice

• prior (np.array) – prior evaluated along the 1d slice

sensitivity()
Computes sensitivity measures (not normalised) for 1) each individual parameter: from the diagonal el-
ements of the FIM 2) incorporating parametric interactions: from the standard deviations derived from
the FIM More on these interpretations can be found here: https://doi.org/10.1529/biophysj.104.053405 A
larger entry translates into greater anticipated model sensitivity to changes in the parameter of interest.

Parameters FIM (2d numpy.array) – The Fisher Information Matrix

Returns

• sensitivity_individual (numpy.array) – Sensitivity measure for individual parameters.

• sensitivity_correlated (numpy.array) – Sensitivity measure incorporating parametric in-
teractions.

set_contact_matrix()
Sets the internal contact matrix

Parameters contactMatrix (callable) – A function that returns the contact matrix given
time, with call signature contactMatrix(t).

set_det_method()
Sets the method used for deterministic integration for the SIR_type model

Parameters

• det_method (str) – The name of the integration method. Choose between ‘LSODA’
and ‘RK45’.

• rtol (double, optional) – relative tolerance of the integrator (default 1e-3)

• max_steps (int, optional) – Maximum number of integration steps (total) for
the integrator. Default: unlimited (represented as 0) Parameters for which the integrator
reaches max_steps are disregarded by the optimiser.

set_det_model()
Sets the internal deterministic model with given epidemiological parameters

58 Chapter 3. API Reference

https://doi.org/10.1529/biophysj.104.053405

PyRoss, Release 1.0.0

Parameters parameters (dict) – A dictionary of parameter values, same as the ones re-
quired for initialisation.

set_lyapunov_method()
Sets the method used for deterministic integration for the SIR_type model

Parameters

• lyapunov_method (str) – The name of the integration method. Choose between
‘LSODA’, ‘RK45’, ‘RK2’, ‘RK4’, and ‘euler’.

• rtol (double, optional) – relative tolerance of the integrator (default 1e-3)

• max_steps (int) – Maximum number of integration steps (total) for the integrator. De-
fault: unlimited (represented as 0) Parameters for which the integrator reaches max_steps
are disregarded by the optimiser.

set_params()
Sets epidemiological parameters used for evaluating -log(p)

Parameters parameters (dict) – A dictionary containing all epidemiological parameters.
Same keys as the one used to initialise the class.

Notes

Can use fill_params_dict to generate the full dictionary if only a few parameters are changed

3.4.2 Model

class pyross.inference.Model
Generic user-defined epidemic model.

To initialise the Model,

Parameters

• model_spec (dict) – A dictionary specifying the model. See Examples.

• parameters (dict) – A dictionary containing the model parameters. All parameters can
be float if not age-dependent, and np.array(M,) if age-dependent

• M (int) – Number of age groups.

• fi (np.array(M) or list) – Fraction of each age group.

• Omega (int) – Total population.

• steps (int, optional) – The number of internal integration steps performed be-
tween the observed points (not used in tangent space inference). For robustness, set
steps to be large, lyapunov_method=’LSODA’. For speed, set steps to be small (~4), lya-
punov_method=’euler’. For a combination of the two, choose something in between.

• det_method (str, optional) – The integration method used for deterministic inte-
gration. Choose one of ‘LSODA’ and ‘RK45’. Default is ‘LSODA’.

• lyapunov_method (str, optional) – The integration method used for the integra-
tion of the Lyapunov equation for the covariance. Choose one of ‘LSODA’, ‘RK45’, ‘RK2’,
‘RK4’ and ‘euler’. Default is ‘LSODA’.

• rtol_det (float, optional) – relative tolerance for the deterministic integrator (de-
fault 1e-3)

3.4. Bayesian inference 59

PyRoss, Release 1.0.0

• rtol_lyapunov (float, optional) – relative tolerance for the Lyapunov-type in-
tegrator (default 1e-3)

• max_steps_det (int, optional) – Maximum number of integration steps (total)
for the deterministic integrator. Default: unlimited (represented as 0) Parameters for which
the integrator reaches max_steps_det are disregarded by the optimiser.

• max_steps_lyapunov (int, optional) – Maximum number of integration steps
(total) for the Lyapunov-type integrator. Default: unlimited (represented as 0) Parameters
for which the integrator reaches max_steps_lyapunov are disregarded by the optimiser.

• parameter_mapping (python function, optional) – A user-defined function
that maps the dictionary the parameters used for inference to a dictionary of parameters used
in model_spec. Default is an identical mapping.

• time_dep_param_mapping (python function, optional) – As parame-
ter_mapping, but time-dependent. The user-defined function takes time as a second ar-
gument.

• SIR_type for a table of all the methods (See) –

Examples

An example of model_spec and parameters for SIR class with a constant influx

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"constant" : [["k"]],
"infection" : [["I", "S", "-beta"]]

},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "S", "beta"]]

}
}

>>> parameters = {
'beta': 0.1,
'gamma': 0.1,
'k': 1,

}

• Link to example notebook

3.4.3 Spp

class pyross.inference.Spp
This is a slightly more specific version of the class Model.

Spp is still supported for backward compatibility.

Model class is recommended over Spp for new users.

The Spp class works like Model but infection terms use a single class S . . .

Parameters

• model_spec (dict) – A dictionary specifying the model. See Examples.

60 Chapter 3. API Reference

https://github.com/rajeshrinet/pyross/blob/master/examples/inference/ex01b_Model.ipynb

PyRoss, Release 1.0.0

• parameters (dict) – A dictionary containing the model parameters. All parameters can
be float if not age-dependent, and np.array(M,) if age-dependent

• M (int) – Number of age groups.

• fi (np.array(M) or list) – Fraction of each age group.

• Omega (int) – Total population.

• steps (int, optional) – The number of internal integration steps performed be-
tween the observed points (not used in tangent space inference). For robustness, set
steps to be large, lyapunov_method=’LSODA’. For speed, set steps to be small (~4), lya-
punov_method=’euler’. For a combination of the two, choose something in between.

• det_method (str, optional) – The integration method used for deterministic inte-
gration. Choose one of ‘LSODA’ and ‘RK45’. Default is ‘LSODA’.

• lyapunov_method (str, optional) – The integration method used for the integra-
tion of the Lyapunov equation for the covariance. Choose one of ‘LSODA’, ‘RK45’, ‘RK2’
and ‘euler’. Default is ‘LSODA’.

• rtol_det (float, optional) – relative tolerance for the deterministic integrator (de-
fault 1e-3)

• rtol_lyapunov (float, optional) – relative tolerance for the Lyapunov-type in-
tegrator (default 1e-3)

• max_steps_det (int, optional) – Maximum number of integration steps (total)
for the deterministic integrator. Default: unlimited (represented as 0) Parameters for which
the integrator reaches max_steps_det are disregarded by the optimiser.

• max_steps_lyapunov (int, optional) – Maximum number of integration steps
(total) for the Lyapunov-type integrator. Default: unlimited (represented as 0) Parameters
for which the integrator reaches max_steps_lyapunov are disregarded by the optimiser.

• parameter_mapping (python function, optional) – A user-defined function
that maps the dictionary the parameters used for inference to a dictionary of parameters used
in model_spec. Default is an identical mapping.

• time_dep_param_mapping (python function, optional) – As parame-
ter_mapping, but time-dependent. The user-defined function takes time as a second ar-
gument.

• SIR_type for a table of all the methods (See) –

Examples

An example of model_spec and parameters for SIR class with a constant influx

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"constant" : [["k"]],
"infection" : [["I", "-beta"]]

},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "beta"]]

}
}

(continues on next page)

3.4. Bayesian inference 61

PyRoss, Release 1.0.0

(continued from previous page)

>>> parameters = {
'beta': 0.1,
'gamma': 0.1,
'k': 1,

}

• Link to example notebook

3.4.4 SIR

class pyross.inference.SIR
Susceptible, Infected, Removed (SIR)

• Ia: asymptomatic

• Is: symptomatic

To initialise the SIR class,

Parameters

• parameters (dict) – Contains the following keys:

alpha: float Ratio of asymptomatic carriers

beta: float Infection rate upon contact

gIa: float Recovery rate for asymptomatic

gIs: float Recovery rate for symptomatic

fsa: float Fraction by which symptomatic individuals do not self-isolate.

• M (int) – Number of age groups

• fi (float numpy.array) – Number of people in each age group divided by Omega.

• Omega (float, optional) – System size parameter, e.g. total population. Default to
1.

• steps (int, optional) – The number of internal integration steps performed be-
tween the observed points (not used in tangent space inference). For robustness, set
steps to be large, lyapunov_method=’LSODA’. For speed, set steps to be small (~4), lya-
punov_method=’euler’. For a combination of the two, choose something in between.

• det_method (str, optional) – The integration method used for deterministic inte-
gration. Choose one of ‘LSODA’ and ‘RK45’. Default is ‘LSODA’.

• lyapunov_method (str, optional) – The integration method used for the integra-
tion of the Lyapunov equation for the covariance. Choose one of ‘LSODA’, ‘RK45’, ‘RK2’,
‘RK4’ and ‘euler’. Default is ‘LSODA’.

• rtol_det (float, optional) – relative tolerance for the deterministic integrator (de-
fault 1e-4)

• rtol_lyapunov (float, optional) – relative tolerance for the Lyapunov-type in-
tegrator (default 1e-3)

• max_steps_det (int, optional) – Maximum number of integration steps (total)
for the deterministic integrator. Default: unlimited (represented as 0). Parameters for which
the integrator reaches max_steps_det are disregarded by the optimiser.

62 Chapter 3. API Reference

https://github.com/rajeshrinet/pyross/blob/master/examples/inference/ex02a_Spp_inference.ipynb

PyRoss, Release 1.0.0

• max_steps_lyapunov (int, optional) – Maximum number of integration steps
(total) for the Lyapunov-type integrator. Default: unlimited (represented as 0) Parameters
for which the integrator reaches max_steps_lyapunov are disregarded by the optimiser.

3.4.5 SEIR

class pyross.inference.SEIR
Susceptible, Exposed, Infected, Removed (SEIR)

• Ia: asymptomatic

• Is: symptomatic

To initialise the SEIR class,

Parameters

• parameters (dict) – Contains the following keys:

alpha: float or np.array(M) Fraction of infected who are asymptomatic.

beta: float Rate of spread of infection.

gIa: float Rate of removal from asymptomatic individuals.

gIs: float Rate of removal from symptomatic individuals.

fsa: float Fraction by which symptomatic individuals do not self-isolate.

gE: float rate of removal from exposed individuals.

• M (int) – Number of age groups

• fi (float numpy.array) – Number of people in each compartment divided by Omega

• Omega (float, optional) – System size, e.g. total population. Default is 1.

• steps (int, optional) – The number of internal integration steps performed be-
tween the observed points (not used in tangent space inference). For robustness, set
steps to be large, lyapunov_method=’LSODA’. For speed, set steps to be small (~4), lya-
punov_method=’euler’. For a combination of the two, choose something in between.

• det_method (str, optional) – The integration method used for deterministic inte-
gration. Choose one of ‘LSODA’ and ‘RK45’. Default is ‘LSODA’.

• lyapunov_method (str, optional) – The integration method used for the integra-
tion of the Lyapunov equation for the covariance. Choose one of ‘LSODA’, ‘RK45’, ‘RK2’,
‘RK4’ and ‘euler’. Default is ‘LSODA’.

• rtol_det (float, optional) – relative tolerance for the deterministic integrator (de-
fault 1e-3)

• rtol_lyapunov (float, optional) – relative tolerance for the Lyapunov-type in-
tegrator (default 1e-3)

• max_steps_det (int, optional) – Maximum number of integration steps (total)
for the deterministic integrator. Default: unlimited (represented as 0) Parameters for which
the integrator reaches max_steps_det are disregarded by the optimiser.

• max_steps_lyapunov (int, optional) – Maximum number of integration steps
(total) for the Lyapunov-type integrator. Default: unlimited (represented as 0) Parameters
for which the integrator reaches max_steps_lyapunov are disregarded by the optimiser.

3.4. Bayesian inference 63

PyRoss, Release 1.0.0

3.4.6 SEAIRQ

class pyross.inference.SEAIRQ
Susceptible, Exposed, Asymptomatic and infected, Infected, Removed, Quarantined (SEAIRQ)

• Ia: asymptomatic

• Is: symptomatic

• E: exposed

• A: asymptomatic and infectious

• Q: quarantined

To initialise the SEAIRQ class,

Parameters

• parameters (dict) – Contains the following keys:

alpha: float or np.array(M) Fraction of infected who are asymptomatic.

beta: float Rate of spread of infection.

gIa: float Rate of removal from asymptomatic individuals.

gIs: float Rate of removal from symptomatic individuals.

gE: float rate of removal from exposed individuals.

gA: float rate of removal from activated individuals.

fsa: float Fraction by which symptomatic individuals do not self-isolate.

tE: float testing rate and contact tracing of exposeds

tA: float testing rate and contact tracing of activateds

tIa: float testing rate and contact tracing of asymptomatics

tIs: float testing rate and contact tracing of symptomatics

• M (int) – Number of compartments

• fi (float numpy.array) – Number of people in each compartment divided by Omega.

• Omega (float, optional) – System size, e.g. total population. Default is 1.

• steps (int, optional) – The number of internal integration steps performed be-
tween the observed points (not used in tangent space inference). For robustness, set
steps to be large, lyapunov_method=’LSODA’. For speed, set steps to be small (~4), lya-
punov_method=’euler’. For a combination of the two, choose something in between.

• det_method (str, optional) – The integration method used for deterministic inte-
gration. Choose one of ‘LSODA’ and ‘RK45’. Default is ‘LSODA’.

• lyapunov_method (str, optional) – The integration method used for the integra-
tion of the Lyapunov equation for the covariance. Choose one of ‘LSODA’, ‘RK45’, ‘RK2’,
‘RK4’ and ‘euler’. Default is ‘LSODA’.

• rtol_det (float, optional) – relative tolerance for the deterministic integrator (de-
fault 1e-3)

• rtol_lyapunov (float, optional) – relative tolerance for the Lyapunov-type in-
tegrator (default 1e-3)

64 Chapter 3. API Reference

PyRoss, Release 1.0.0

• max_steps_det (int, optional) – Maximum number of integration steps (total)
for the deterministic integrator. Default: unlimited (represented as 0) Parameters for which
the integrator reaches max_steps_det are disregarded by the optimiser.

• max_steps_lyapunov (int, optional) – Maximum number of integration steps
(total) for the Lyapunov-type integrator. Default: unlimited (represented as 0) Parameters
for which the integrator reaches max_steps_lyapunov are disregarded by the optimiser.

3.4.7 SppQ

class pyross.inference.SppQ
User-defined epidemic model with quarantine stage.

This is a slightly more specific version of the class Model.

SppQ is still supported for backward compatibility.

Model class is recommended over SppQ for new users.

To initialise the SppQ model, . . .

Parameters

• model_spec (dict) – A dictionary specifying the model. See Examples.

• parameters (dict) – A dictionary containing the model parameters. All parameters can
be float if not age-dependent, and np.array(M,) if age-dependent

• testRate (python function) – number of tests per day and age group

• M (int) – Number of age groups.

• fi (np.array(M) or list) – Fraction of each age group.

• Omega (int) – Total population.

• steps (int, optional) – The number of internal integration steps performed be-
tween the observed points (not used in tangent space inference). For robustness, set
steps to be large, lyapunov_method=’LSODA’. For speed, set steps to be small (~4), lya-
punov_method=’euler’. For a combination of the two, choose something in between.

• det_method (str, optional) – The integration method used for deterministic inte-
gration. Choose one of ‘LSODA’ and ‘RK45’. Default is ‘LSODA’.

• lyapunov_method (str, optional) – The integration method used for the integra-
tion of the Lyapunov equation for the covariance. Choose one of ‘LSODA’, ‘RK45’, ‘RK2’,
‘RK4’ and ‘euler’. Default is ‘LSODA’.

• rtol_det (float, optional) – relative tolerance for the deterministic integrator (de-
fault 1e-3)

• rtol_lyapunov (float, optional) – relative tolerance for the Lyapunov-type in-
tegrator (default 1e-3)

• max_steps_det (int, optional) – Maximum number of integration steps (total)
for the deterministic integrator. Default: unlimited (represented as 0) Parameters for which
the integrator reaches max_steps_det are disregarded by the optimiser.

• max_steps_lyapunov (int, optional) – Maximum number of integration steps
(total) for the Lyapunov-type integrator. Default: unlimited (represented as 0) Parameters
for which the integrator reaches max_steps_lyapunov are disregarded by the optimiser.

3.4. Bayesian inference 65

PyRoss, Release 1.0.0

• parameter_mapping (python function, optional) – A user-defined function
that maps the dictionary the parameters used for inference to a dictionary of parameters used
in model_spec. Default is an identical mapping.

• time_dep_param_mapping (python function, optional) – As parame-
ter_mapping, but time-dependent. The user-defined function takes time as a second ar-
gument.

• SIR_type for a table of all the methods (See) –

Examples

An example of model_spec and parameters for SIR class with random testing (without false positives/negatives)
and quarantine

>>> model_spec = {
"classes" : ["S", "I"],
"S" : {

"infection" : [["I", "-beta"]]
},
"I" : {

"linear" : [["I", "-gamma"]],
"infection" : [["I", "beta"]]

},
"test_pos" : ["p_falsepos", "p_truepos", "p_falsepos"] ,
"test_freq" : ["tf", "tf", "tf"]

}
>>> parameters = {

'beta': 0.1,
'gamma': 0.1,
'p_falsepos': 0
'p_truepos': 1
'tf': 1

}

3.5 Control with NPIs

Non-pharmaceutical interventions (NPIs) are strategies that mitigate the spread of a disease by suppressing its normal
pathways for transmission. These include social distancing, wearing masks, working from home, and isolation of
vulnerable populations. In contrast to pharmaceutical interventions, which are slow to develop but effective in the
long term, NPIs can be rapidly implemented but are generally too costly to maintain indefinitely. In the modelling
framework of PyRoss, we represent NPIs as modifications to the contact matrix.

3.5.1 control_integration

class pyross.control.control_integration
Integrator class to implement control through changing the contact matrix as a function of the current state.

simulate_deteministic : Performs a deterministic simulation.

simulate_deterministic()
Performs detemrinistic numerical integration

Parameters

66 Chapter 3. API Reference

PyRoss, Release 1.0.0

• x0 (np.array) – Inital state of the system.

• events (list) – List of events that the current state can satisfy to change behaviour of
the contact matrix. contactMatricies

• contactMatricies (list of python functions) – New contact matrix after
the corresponding event occurs

• Tf (float) – End time for integrator.

• Nf (Int) – Number of time points to evaluate at.

• Ti (float, optional) – Start time for integrator. The default is 0.

• events_repeat (bool, optional) – Wheither events is periodic in time. The
default is false.

• events_subsequent (bool, optional) – TODO

Returns

• x_eval (np.array(len(t), len(x0))) – Numerical integration solution.

• t_eval (np.array) – Corresponding times at which X is evaluated at.

• event_out (list) – List of events that occured during the run.

3.5.2 SIR

class pyross.control.SIR
Susceptible, Infected, Removed (SIR) Ia: asymptomatic Is: symptomatic

. . .

Parameters

• parameters (dict) –

Contains the following keys:

alpha: float, np.array (M,) fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gIa: float rate of removal from asymptomatic individuals.

gIs: float rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(3*M,)) – Initial number in each compartment and class

simulate()

3.5. Control with NPIs 67

PyRoss, Release 1.0.0

3.5.3 SEkIkIkR

3.5.4 SIRS

3.5.5 SEIR

class pyross.control.SEIR
Susceptible, Exposed, Infected, Removed (SEIR) Ia: asymptomatic Is: symptomatic :param parameters:

Contains the following keys:

alpha: float, np.array (M,) fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gIa: float rate of removal from asymptomatic individuals.

gIs: float rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

gE: float rate of removal from exposed individuals.

Parameters

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(4*M,)) – Initial number in each compartment and class

simulate()

3.5.6 SIkR

class pyross.control.SIkR
Susceptible, Infected, Removed (SIkR) method of k-stages of I :param parameters:

Contains the following keys:

alpha: float fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gI: float rate of removal from infectives.

kI: int number of stages of infection.

Parameters

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array((kI + 1)*M,)) – Initial number in each compartment and class

simulate()

3.5.7 SEkIkR

class pyross.control.SEkIkR
Susceptible, Infected, Removed (SIkR) method of k-stages of I See: Lloyd, Theoretical Population Biology 60,
5971 (2001), doi:10.1006tpbi.2001.1525. :param parameters:

68 Chapter 3. API Reference

PyRoss, Release 1.0.0

Contains the following keys:

alpha: float fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gI: float rate of removal from infected individuals.

gE: float rate of removal from exposed individuals.

ki: int number of stages of infectives.

ke: int number of stages of exposed.

Parameters

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array((kI = kE +1)*M,)) – Initial number in each compartment and
class

simulate()

3.5.8 SEAIR

3.5.9 SEAIRQ

class pyross.control.SEAIRQ
Susceptible, Exposed, Asymptomatic and infected, Infected, Removed, Quarantined (SEAIRQ) Ia: asymp-
tomatic Is: symptomatic A: Asymptomatic and infectious

Parameters

• parameters (dict) –

Contains the following keys:

alpha: float fraction of infected who are asymptomatic.

beta: float rate of spread of infection.

gIa: float rate of removal from asymptomatic individuals.

gIs: float rate of removal from symptomatic individuals.

gE: float rate of removal from exposed individuals.

gA: float rate of removal from activated individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

tE [float] testing rate and contact tracing of exposeds

tA [float] testing rate and contact tracing of activateds

tIa: float testing rate and contact tracing of asymptomatics

tIs: float testing rate and contact tracing of symptomatics

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(6*M,)) – Initial number in each compartment and class

simulate()

3.5. Control with NPIs 69

PyRoss, Release 1.0.0

3.6 Contact matrix

Classes and methods to compute contact matrix of a meta-population. The contact matrix 𝐶𝑖𝑗 denotes the average
number of contacts made per day by an individual in class 𝑖 with an individual in class 𝑗. Clearly, the total number
of contacts between group 𝑖 to group 𝑗 must equal the total number of contacts from group 𝑗 to group 𝑖, and thus, for
populations of fixed size the contact matrices obey the reciprocity relation 𝑁𝑖𝐶𝑖𝑗 = 𝑁𝑗𝐶𝑗𝑖. Here 𝑁𝑖 is the population
in group 𝑖.

3.6.1 Contact Matrix Function

Generates contact matrix for given interventions

class pyross.contactMatrix.ContactMatrixFunction
Generates a time dependent contact matrix

For prefactors 𝑎𝑊1, 𝑎𝑊2, 𝑎𝑆1, 𝑎𝑆2, 𝑎𝑂1, 𝑎𝑂2 that multiply the contact matrices CW, CS, and CO. the final con-
tact matrix is computed as

𝐶𝑀𝑖𝑗 = 𝐶𝐻𝑖𝑗 + (𝑎𝑊1)𝑖𝐶𝑊𝑖𝑗(𝑎𝑊2)𝑗 + (𝑎𝑆1)𝑖𝐶𝑊𝑖𝑗(𝑎𝑆2)𝑗 + (𝑎𝑂1)𝑖𝐶𝑂𝑖𝑗(𝑎𝑂2)𝑗

For all the intervention functions, if a prefactor is passed as scalar, it is set to be an M (=no. of metapopulation
groups) dimensional vector with all entries equal to the scalar.

Parameters

• CH (2d np.array) – Contact matrix at home

• CW (2d np.array) – Contact matrix at work

• CS (2d np.array) – Contact matrix at school

• CO (2d np.array) – Contact matrix at other locations

constant_contactMatrix()
Constant contact matrix

Parameters

• aW (float or array of size M, optional) – Fraction of work contact per
receiver of infection. Default is 1.

• aS (float or array of size M, optional) – Fraction of school contact per
receiver of infection. Default is 1.

• aO (float or array of size M, optional) – Fraction of other contact per
receiver of infection. Default is 1.

• aW2 (float or array of size M or None, optional) – Fraction of work
contact per giver of infection. If set to None, aW2 = aW.

• aS2 (float or array of size M or None, optional) – Fraction of
school contact per giver of infection. If set to None, aS2 = aS.

• aO2 (float or array of size M or None, optional) – Fraction of other
contact per giver of infection. If set to None, aO2 = aO.

Returns contactMatrix – A function that takes t as an argument and outputs the contact matrix

Return type callable

get_individual_contactMatrices()
Returns the internal CH, CW, CS and CO

70 Chapter 3. API Reference

PyRoss, Release 1.0.0

intervention_custom_temporal()
Custom temporal interventions

Parameters

• intervention_func (callable) – The calling signature is intervention_func(t,
**kwargs), where t is time and kwargs are other keyword arguments for the function.
The function must return (aW, aS, aO), where aW, aS and aO must be of shape (2, M)

• kwargs (dict) – Keyword arguments for the function.

Returns contactMatrix – A function that takes t as an argument and outputs the contact matrix.

Return type callable

Examples

An example for an custom temporal intervetion that allows for some anticipation and reaction time

>>> def fun(t, M, width=1, loc=0) # using keyword arguments for parameters of
→˓the intervention
>>> a = (1-np.tanh((t-loc)/width))/2
>>> a_full = np.full((2, M), a)
>>> return a_full, a_full, a_full
>>>
>>> contactMatrix = generator.intervention_custom_temporal(fun, width=5,
→˓loc=10)

interventions_temporal()
Temporal interventions

Parameters

• time (np.array) – Ordered array with temporal boundaries between the different in-
terventions.

• interventions (np.array) – Ordered matrix with prefactors aW, aS, aO such
that aW1=aW2=aW during the different time intervals. Note that len(interventions) =
len(times) + 1

Returns contactMatrix – A function that takes t as an argument and outputs the contact matrix

Return type callable

interventions_threshold()
Temporal interventions

Parameters

• threshold (np.array) – Ordered array with temporal boundaries between the differ-
ent interventions.

• interventions (np.array) – Array of shape [K+1,3, ..] with prefactors during
different phases of intervention The current state of the intervention is defined by the
largest integer “index” such that state[j] >= thresholds[index,j] for all j.

Returns contactMatrix – A function that takes t as an argument and outputs the contact matrix

Return type callable

3.6. Contact matrix 71

PyRoss, Release 1.0.0

3.6.2 Spatial Contact Matrix

Approximates the spatial contact matrix given the locations, populations and areas of the geographical regions and the
overall age structured contact matrix.

class pyross.contactMatrix.SpatialContactMatrix
A class for generating a spatial compartmental model with commute data

Let 𝜇, 𝜈 denote spatial index and i, j denote age group index.

𝐶𝜇𝜈
𝑖𝑗 =

1

𝑁𝜇
𝑖

̃︀𝐶𝜇𝜈
𝑖𝑗

Parameters

• b (float) – Parameter b in the above equation

• populations (np.array(n_loc, M)) – Populations of regions by age groups. Here
n_loc is the number of regions and M is the number of age groups.

• areas (np.array(n_loc)) – Areas of the geographical regions.

• commutes (np.array(n_loc, n_loc, M)) – Each entry commute[mu, nu, i] needs
to be the number of people of age group i commuting from 𝜇 to 𝜈. Entries with 𝜇 = 𝜈 are
ignored.

contactMatrix.characterise_transient()
The maximal eigenvalue (spectral abcissa), initial groth rate (numerical abcissa), the Kreiss constant (minimum
bound of transient) and time of transient growth

Parameters

• A (an MxM matrix) –

• tol (Used to find a first estimate of the pseudospectrum) –

• theta (normalizing factor found in Townley et al 2007,
default 0) –

• ord (default 2, order of matrix norm) –

Returns

• [spectral abcissa, numerical abcissa, Kreiss constant,

• duration of transient, henrici’s departure from normalcy]

3.7 Forecasting

Forecasting with the inferred parameters, error bars and, if there are latent variables, inferred initial conditions.

3.7.1 SIR

class pyross.forecast.SIR
Susceptible, Infected, Removed (SIR) Ia: asymptomatic Is: symptomatic

. . .

Parameters

• parameters (dict) –

72 Chapter 3. API Reference

PyRoss, Release 1.0.0

Contains the following keys:

alpha: float Estimate mean value of fraction of infected who are asymptomatic.

beta: float Estimate mean value of rate of spread of infection.

gIa: float Estimate mean value of rate of removal from asymptomatic individuals.

gIs: float Estimate mean value of rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

cov: np.array() covariance matrix for all the estimated parameters.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(3*M,)) – Initial number in each compartment and class

simulate()

simulate()

Parameters

• S0 (np.array(M,)) – Initial number of susceptables.

• Ia0 (np.array(M,)) – Initial number of asymptomatic infectives.

• Is0 (np.array(M,)) – Initial number of symptomatic infectives.

• contactMatrix (python function(t), optional) – The social contact ma-
trix C_{ij} denotes the average number of contacts made per day by an individual in class
i with an individual in class j The default is None.

• Tf (float, optional) – Final time of integrator. The default is 100.

• Nf (Int, optional) – Number of time points to evaluate.The default is 101,

• Ns (int, optional) – Number of samples of parameters to take. The default is 1000.

• nc (int, optional) –

• epsilon (np.float64, optional) – Acceptable error in leap. The default is 0.03.

• tau_update_frequency (int, optional) –

• verbose (bool, optional) – Verbosity of output. The default is False.

• Ti (float, optional) – Start time of integrator. The default is 0.

• method (str, optional) – Pyross integrator to use. The default is “deterministic”.

• events (list of python functions, optional) – List of events that the
current state can satisfy to change behaviour of the contact matrix. Event occurs when
the value of the function changes sign. Event.direction determines which direction trig-
gers the event, takign values {+1,-1}. The default is [].

• contactMatricies (list of python functions) – New contact matrix after
the corresponding event occurs The default is [].

• events_repeat (bool, optional) – Wheither events is periodic in time. The
default is false.

• events_subsequent (bool, optional) – TODO

Returns

out_dict –

3.7. Forecasting 73

PyRoss, Release 1.0.0

Dictionary containing the following keys:

X: list List of resultant trajectories

t: list List of times at which X is evaluated.

X_mean [list] Mean trajectory of X

X_std [list] Standard devation of trajectories of X at each time point.

<init params> : Initial parameters passed at object instantiation. sample_parameters : list
of parameters sampled to make trajectories.

Return type dict

3.7.2 SIR_latent

class pyross.forecast.SIR_latent
Susceptible, Infected, Removed (SIR) Ia: asymptomatic Is: symptomatic

Latent inference class to be used when observed data is incomplete. . . .

Parameters

• parameters (dict) –

Contains the following keys:

alpha: float Estimate mean value of fraction of infected who are asymptomatic.

beta: float Estimate mean value of rate of spread of infection.

gIa: float Estimate mean value of rate of removal from asymptomatic individuals.

gIs: float Estimate mean value of rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

cov: np.array() Covariance matrix for all the estimated parameters.

S0: np.array(M,) Estimate initial number of susceptables.

Ia0: np.array(M,) Estimate initial number of asymptomatic infectives.

Is0: np.array(M,) Estimate initial number of symptomatic infectives.

cov_init [np.array((3*M, 3*M)) :] Covariance matrix for the initial state.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(3*M,)) – Initial number in each compartment and class

simulate()

simulate()

Parameters

• contactMatrix (python function(t), optional) – The social contact ma-
trix C_{ij} denotes the average number of contacts made per day by an individual in class
i with an individual in class j The default is None.

• Tf (float) – Final time of integrator.

• Nf (Int) – Number of time points to evaluate.

• Ns (int) – Number of samples of parameters to take.

74 Chapter 3. API Reference

PyRoss, Release 1.0.0

• nc (int, optional) –

• epsilon (np.float64, optional) – Acceptable error in leap. The default is 0.03.

• tau_update_frequency (int, optional) – TODO

• verbose (bool, optional) – Verbosity of output. The default is False.

• Ti (float, optional) – Start time of integrator. The default is 0.

• method (str, optional) – Pyross integrator to use. The default is “deterministic”.

• events (list of python functions, optional) – List of events that the
current state can satisfy to change behaviour of the contact matrix. Event occurs when
the value of the function changes sign. Event.direction determines which direction trig-
gers the event, takign values {+1,-1}. The default is [].

• contactMatricies (list of python functions) – New contact matrix after
the corresponding event occurs The default is [].

• events_repeat (bool, optional) – Wheither events is periodic in time. The
default is false.

• events_subsequent (bool, optional) – TODO

Returns

out_dict –

Dictionary containing the following keys:

X: list List of resultant trajectories

t: list List of times at which X is evaluated.

X_mean [list] Mean trajectory of X

X_std [list] Standard devation of trajectories of X at each time point.

<init params> : Initial parameters passed at object instantiation. sample_parameters : list
of parameters sampled to make trajectories. sample_inits : List of initial state vectors tried.

Return type dict

3.7.3 SEIR

class pyross.forecast.SEIR
Susceptible, Exposed, Infected, Removed (SEIR) Ia: asymptomatic Is: symptomatic :param parameters:

Contains the following keys:

alpha: float Estimate mean value of fraction of infected who are asymptomatic.

beta: float Estimate mean value of rate of spread of infection.

gIa: float Estimate mean value of rate of removal from asymptomatic individuals.

gIs: float Estimate mean value of rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

gE: float Estimated mean value of rate of removal from exposed individuals.

cov: np.array() covariance matrix for all the estimated parameters.

Parameters

3.7. Forecasting 75

PyRoss, Release 1.0.0

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(4*M,)) – Initial number in each compartment and class

simulate()

simulate()

Parameters

• S0 (np.array(M,)) – Initial number of susceptables.

• E0 (np.array(M,)) – Initial number of exposed.

• Ia0 (np.array(M,)) – Initial number of asymptomatic infectives.

• Is0 (np.array(M,)) – Initial number of symptomatic infectives.

• contactMatrix (python function(t), optional) – The social contact ma-
trix C_{ij} denotes the average number of contacts made per day by an individual in class
i with an individual in class j The default is None.

• Tf (float, optional) – Final time of integrator. The default is 100.

• Nf (Int, optional) – Number of time points to evaluate.The default is 101,

• Ns (int, optional) – Number of samples of parameters to take. The default is 1000.

• nc (int, optional) –

• epsilon (np.float64, optional) – Acceptable error in leap. The default is 0.03.

• tau_update_frequency (int, optional) –

• verbose (bool, optional) – Verbosity of output. The default is False.

• Ti (float, optional) – Start time of integrator. The default is 0.

• method (str, optional) – Pyross integrator to use. The default is “deterministic”.

• events (list of python functions, optional) – List of events that the
current state can satisfy to change behaviour of the contact matrix. Event occurs when
the value of the function changes sign. Event.direction determines which direction trig-
gers the event, takign values {+1,-1}. The default is [].

• contactMatricies (list of python functions) – New contact matrix after
the corresponding event occurs The default is [].

• events_repeat (bool, optional) – Wheither events is periodic in time. The
default is false.

• events_subsequent (bool, optional) – TODO

Returns

out_dict –

Dictionary containing the following keys:

X: list List of resultant trajectories

t: list List of times at which X is evaluated.

X_mean [list] Mean trajectory of X

X_std [list] Standard devation of trajectories of X at each time point.

76 Chapter 3. API Reference

PyRoss, Release 1.0.0

<init params> : Initial parameters passed at object instantiation. sample_parameters : list
of parameters sampled to make trajectories.

Return type dict

3.7.4 SEIR_latent

class pyross.forecast.SEIR_latent
Susceptible, Exposed, Infected, Removed (SEIR) Ia: asymptomatic Is: symptomatic

Latent inference class to be used when observed data is incomplete.

Parameters

• parameters (dict) –

Contains the following keys:

alpha: float Estimate mean value of fraction of infected who are asymptomatic.

beta: float Estimate mean value of rate of spread of infection.

gIa: float Estimate mean value of rate of removal from asymptomatic individuals.

gIs: float Estimate mean value of rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

gE: float Estimated mean value of rate of removal from exposed individuals.

cov: np.array() covariance matrix for all the estimated parameters.

S0: np.array(M,) Estimate initial number of susceptables.

E0: np.array(M,) Estimate initial number of exposed.

Ia0: np.array(M,) Estimate initial number of asymptomatic infectives.

Is0: np.array(M,) Estimate initial number of symptomatic infectives.

cov_init [np.array((3*M, 3*M)) :] Covariance matrix for the initial state.

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(4*M,)) – Initial number in each compartment and class

simulate()

simulate()

Parameters

• contactMatrix (python function(t), optional) – The social contact ma-
trix C_{ij} denotes the average number of contacts made per day by an individual in class
i with an individual in class j The default is None.

• Tf (float, optional) – Final time of integrator. The default is 100.

• Nf (Int, optional) – Number of time points to evaluate.The default is 101,

• Ns (int, optional) – Number of samples of parameters to take. The default is 1000.

• nc (int, optional) –

• epsilon (np.float64, optional) – Acceptable error in leap. The default is 0.03.

• tau_update_frequency (int, optional) –

3.7. Forecasting 77

PyRoss, Release 1.0.0

• verbose (bool, optional) – Verbosity of output. The default is False.

• Ti (float, optional) – Start time of integrator. The default is 0.

• method (str, optional) – Pyross integrator to use. The default is “deterministic”.

• events (list of python functions, optional) – List of events that the
current state can satisfy to change behaviour of the contact matrix. Event occurs when
the value of the function changes sign. Event.direction determines which direction trig-
gers the event, takign values {+1,-1}. The default is [].

• contactMatricies (list of python functions) – New contact matrix after
the corresponding event occurs The default is [].

• events_repeat (bool, optional) – Wheither events is periodic in time. The
default is false.

• events_subsequent (bool, optional) – TODO

Returns

out_dict –

Dictionary containing the following keys:

X: list List of resultant trajectories

t: list List of times at which X is evaluated.

X_mean [list] Mean trajectory of X

X_std [list] Standard devation of trajectories of X at each time point.

<init params> : Initial parameters passed at object instantiation. sample_parameters : list
of parameters sampled to make trajectories. sample_inits : List of initial state vectors tried.

Return type dict

3.7.5 SEAIRQ

class pyross.forecast.SEAIRQ
Susceptible, Exposed, Infected, Removed (SEIR) Ia: asymptomatic Is: symptomatic A: Asymptomatic and
infectious :param parameters:

Contains the following keys:

alpha: float Estimate mean value of fraction of infected who are asymptomatic.

beta: float Estimate mean value of rate of spread of infection.

gIa: float Estimate mean value of rate of removal from asymptomatic individuals.

gIs: float Estimate mean value of rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

gE: float Estimated mean value of rate of removal from exposed individuals.

gA: float Estimated mean value of rate of removal from activated individuals.

cov: np.array() covariance matrix for all the estimated parameters.

tE [float] testing rate and contact tracing of exposeds

tA [float] testing rate and contact tracing of activateds

tIa: float testing rate and contact tracing of asymptomatics

78 Chapter 3. API Reference

PyRoss, Release 1.0.0

tIs: float testing rate and contact tracing of symptomatics

Parameters

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(4*M,)) – Initial number in each compartment and class

simulate()

simulate()

Parameters

• S0 (np.array) – Initial number of susceptables.

• E0 (np.array) – Initial number of exposeds.

• A0 (np.array) – Initial number of activateds.

• Ia0 (np.array) – Initial number of asymptomatic infectives.

• Is0 (np.array) – Initial number of symptomatic infectives.

• Q0 (np.array) – Initial number of quarantineds.

• contactMatrix (python function(t), optional) – The social contact ma-
trix C_{ij} denotes the average number of contacts made per day by an individual in class
i with an individual in class j The default is None.

• Tf (float, optional) – Final time of integrator. The default is 100.

• Nf (Int, optional) – Number of time points to evaluate.The default is 101,

• Ns (int, optional) – Number of samples of parameters to take. The default is 1000.

• nc (int, optional) –

• epsilon (np.float64, optional) – Acceptable error in leap. The default is 0.03.

• tau_update_frequency (int, optional) –

• verbose (bool, optional) – Verbosity of output. The default is False.

• Ti (float, optional) – Start time of integrator. The default is 0.

• method (str, optional) – Pyross integrator to use. The default is “deterministic”.

• events (list of python functions, optional) – List of events that the
current state can satisfy to change behaviour of the contact matrix. Event occurs when
the value of the function changes sign. Event.direction determines which direction trig-
gers the event, takign values {+1,-1}. The default is [].

• contactMatricies (list of python functions) – New contact matrix after
the corresponding event occurs The default is [].

• events_repeat (bool, optional) – Wheither events is periodic in time. The
default is false.

• events_subsequent (bool, optional) – TODO

Returns

out_dict –

Dictionary containing the following keys:

X: list List of resultant trajectories

3.7. Forecasting 79

PyRoss, Release 1.0.0

t: list List of times at which X is evaluated.

X_mean [list] Mean trajectory of X

X_std [list] Standard devation of trajectories of X at each time point.

<init params> : Initial parameters passed at object instantiation. sample_parameters : list
of parameters sampled to make trajectories.

Return type dict

3.7.6 SEAIRQ_latent

class pyross.forecast.SEAIRQ_latent
Susceptible, Exposed, Infected, Removed (SEIR) Ia: asymptomatic Is: symptomatic A: Asymptomatic and
infectious

Latent inference class to be used when observed data is incomplete. :param parameters:

Contains the following keys:

alpha: float Estimate mean value of fraction of infected who are asymptomatic.

beta: float Estimate mean value of rate of spread of infection.

gIa: float Estimate mean value of rate of removal from asymptomatic individuals.

gIs: float Estimate mean value of rate of removal from symptomatic individuals.

fsa: float fraction by which symptomatic individuals do not self-isolate.

gE: float Estimated mean value of rate of removal from exposed individuals.

gA: float Estimated mean value of rate of removal from activated individuals.

cov: np.array() covariance matrix for all the estimated parameters.

tE [float] testing rate and contact tracing of exposeds

tA [float] testing rate and contact tracing of activateds

tIa: float testing rate and contact tracing of asymptomatics

tIs: float testing rate and contact tracing of symptomatics

S0: np.array(M,) Estimate initial number of susceptables.

E0: np.array(M,) Estimate initial number of exposed.

A0: np.array(M,) Estimate initial number of activated.

Ia0: np.array(M,) Estimate initial number of asymptomatic infectives.

Is0: np.array(M,) Estimate initial number of symptomatic infectives.

Q0: np.array(M,) Estimate initial number of quarantined.

cov_init [np.array((3*M, 3*M)) :] Covariance matrix for the initial state.

Parameters

• M (int) – Number of compartments of individual for each class. I.e len(contactMatrix)

• Ni (np.array(4*M,)) – Initial number in each compartment and class

simulate()

80 Chapter 3. API Reference

PyRoss, Release 1.0.0

simulate()

Parameters

• contactMatrix (python function(t), optional) – The social contact ma-
trix C_{ij} denotes the average number of contacts made per day by an individual in class
i with an individual in class j The default is None.

• Tf (float, optional) – Final time of integrator. The default is 100.

• Nf (Int, optional) – Number of time points to evaluate.The default is 101,

• Ns (int, optional) – Number of samples of parameters to take. The default is 1000.

• nc (int, optional) –

• epsilon (np.float64, optional) – Acceptable error in leap. The default is 0.03.

• tau_update_frequency (int, optional) –

• verbose (bool, optional) – Verbosity of output. The default is False.

• Ti (float, optional) – Start time of integrator. The default is 0.

• method (str, optional) – Pyross integrator to use. The default is “deterministic”.

• events (list of python functions, optional) – List of events that the
current state can satisfy to change behaviour of the contact matrix. Event occurs when
the value of the function changes sign. Event.direction determines which direction trig-
gers the event, takign values {+1,-1}. The default is [].

• contactMatricies (list of python functions) – New contact matrix after
the corresponding event occurs The default is [].

• events_repeat (bool, optional) – Wheither events is periodic in time. The
default is false.

• events_subsequent (bool, optional) – TODO

Returns

out_dict –

Dictionary containing the following keys:

X: list List of resultant trajectories

t: list List of times at which X is evaluated.

X_mean [list] Mean trajectory of X

X_std [list] Standard devation of trajectories of X at each time point.

<init params> : Initial parameters passed at object instantiation. sample_parameters : list
of parameters sampled to make trajectories. sample_inits : List of initial state vectors tried.

Return type dict

3.8 Evidence

Additional functions for computing the evidence of a pyross compartment model.

This is an extension of pyross.inference. Evidence computation via nested sampling is already directly implemented in
the inference module. However, for large-scale (high-dimensional) inference problems, nested sampling can become
very slow. In this module, we implement two additional ways to compute the evidence that work whenever the MCMC

3.8. Evidence 81

PyRoss, Release 1.0.0

simulation of the posterior distribution is feasible. See the ex-evidence.ipynb notebook for a code example of all ways
to compute the evidence.

pyross.evidence.get_parameters(estimator, x, Tf, prior_dict, contactMatrix=None, genera-
tor=None, intervention_fun=None, tangent=False)

Process an estimator from pyross.inference to generate input arguments for the evidence computations py-
ross.evidence.evidence_smc and pyross.evidence.evidence_path_sampling for estimation problems without la-
tent variables. The input has the same structure as the input of pyross.inference.infer, see there for a detailed
documentation of the arguments.

Parameters

• estimator (pyross.inference.SIR_type) – The estimator object of the underly-
ing (non-latent) inference problem.

• x (2d numpy.array) –

• Tf (float) –

• prior_dict (dict) –

• contactMatrix (callable, optional) –

• generator (pyross.contactMatrix, optional) –

• intervention_fun (callable, optional) –

• tangent (bool, optional) –

Returns

• logl – The log-likelihood of the inference problem.

• prior – The prior distribution of the parameters.

• ndim – The number of (flat) parameters.

pyross.evidence.latent_get_parameters(estimator, obs, fltr, Tf, param_priors,
init_priors, contactMatrix=None, genera-
tor=None, intervention_fun=None, tangent=False,
smooth_penalty=False, disable_bounds=False)

Process an estimator from pyross.inference to generate input arguments for the evidence computations py-
ross.evidence.evidence_smc and pyross.evidence.evidence_path_sampling for estimation problems with latent
variables. The input has the same structure as the input of pyross.inference.latent_infer, see there for a detailed
documentation of the arguments.

Parameters

• estimator (pyross.inference.SIR_type) – The estimator object of the underly-
ing (non-latent) inference problem.

• obs (np.array) –

• fltr (2d np.array) –

• Tf (float) –

• param_priors (dict) –

• init_priors (dict) –

• contactMatrix (callable, optional) –

• generator (pyross.contactMatrix, optional) –

• intervention_fun (callable, optional) –

82 Chapter 3. API Reference

https://github.com/rajeshrinet/pyross/blob/master/examples/inference/ex-evidence.ipynb

PyRoss, Release 1.0.0

• tangent (bool, optional) –

Returns

• logl – The log-likelihood of the inference problem.

• prior – The prior distribution of the parameters.

• ndim – The number of (flat) parameters.

pyross.evidence.compute_ess(weights)
Compute the effective sample size of a weighted set of samples.

pyross.evidence.compute_cess(old_weights, weights)
Compute the conditional effective sample size as decribed in [Zhou, Johansen, Aston 2016].

pyross.evidence.resample(N, particles, logl, probs)
Implements the residual resampling scheme, see for example [Doucet, Johansen 2008], https://www.stats.ox.ac.
uk/~doucet/doucet_johansen_tutorialPF2011.pdf

pyross.evidence.evidence_smc(logl, prior, ndim, npopulation=200, target_cess=0.9, min_ess=0.6,
mcmc_iter=50, nprocesses=0, save_samples=True, verbose=True)

Compute the evidence using an adaptive sequential Monte Carlo method.

This function computes the model evidence of the inference problem using a sequential Monte Carlo particle
method starting at the prior distribution. We implement the method SMC2 described in [Zhou, Johansen, Aston
2016], https://doi.org/10.1080/10618600.2015.1060885

We start by sampling npopulation particles from the prior distribution with uniform weights. The target distri-
bution of the weighted set of particles gets transformed to the posterior distribution by a geometric annealing
schedule. The step size is chosen adaptively based on the target decay rate of the effective samples size tar-
get_cess in each step. Once the effective sample size of the weighted particles goes below min_cess * npopula-
tion, we replace the weighted set of samples by a resampled, unweighted set. Between each step, the particles
are decorrelated and equilibreated on the current level distribution by running an MCMC chain.

Parameters

• logl – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• prior – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• ndim – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• npopulation (int) – The number of particles used for the SMC iteration. Higher num-
ber of particles increases the accuracy of the result.

• target_cess (float) – The target rate for the decay of the effective sample size (ess
reduces by 1-target_cess each step). Smaller values result in more iterations and a higher
accuracy result.

• min_ess (float) – The minimal effective sample size of the system. Low effective
sample size imply many particles in low probability regions. However, resampling adds
variance so it should not be done in every step.

• mcmc_iter (int) – The number of MCMC iterations in each step of the algorithm. The
number of iterations should be large enough to equilibrate the particles with the current
distribution, higher iteration numbers will typically not result in more accurate results. Of-
tentimes, it makes more sense to increase the number of steps (via target_cess) instead of
increasing the number of iterations. This decreases the difference in distribution between
consecutive steps and reduced the error of the final result. This number should however be

3.8. Evidence 83

https://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf
https://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf
https://doi.org/10.1080/10618600.2015.1060885

PyRoss, Release 1.0.0

large enough to allow equal-position particles (that occur via resampling) to diverge from
each other.

• nprocesses (int) – The number of processes passed to the emcee MCMC sampler. By
default, the number of physical cores is used.

• save_samples (bool) – If true, this function returns the interal state of each MCMC
iteration.

• verbose (bool) – If true, this function displays the progress of each MCMC iteration in
addition to basic progress information.

Returns

• log_evidence (float) – The estimate of the log evidence.

• if save_samples=True –

result_samples: list of (float, emcee.EnsembleSampler) The list of samplers and their
corresponding step alpha.

pyross.evidence.evidence_path_sampling(logl, prior, ndim, steps, npopulation=100,
mcmc_iter=1000, nprocesses=0, ini-
tial_samples=10, verbose=True, ex-
tend_step_list=None, extend_sampler_list=None)

Compute the evidence using path sampling (thermodynamic integration).

This function computes posterior samples for the distributions

p_s propto prior * likelihood^s

for 0<s1, s steps, using ensemble MCMC. The samples can be used to estimate the evidence via

log_evidence = int_0^1 E_{p_s}[log_likelihood] ds

which is know as path sampling or thermodynamic integration.

This function starts with sampling initial_samples * npopulation samples from the (truncated log-normal) prior.
Afterwards, it runs an ensemble MCMC chain with npopulation ensemble members for mcmc_iter iterations.
To minimise burn-in, the iteration is started with the last sample of the chain with the closest step s that has
already been computed. To extend the results of this function with additional steps, provide the to-be-extended
result via the optional arguments extend_step_list and extend_sampler_list.

This function only returns the step list and the corresponding samplers. To compute the evidence estimate, use
pyross.evidence.evidence_path_sampling_process_result.

Parameters

• logl – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• prior – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• ndim – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• steps (list of float) – List of steps s for which the distribution p_s is explored
using MCMC. Should be in ascending order and not include 0.

• npopulation (int) – The population size of the MCMC ensemble sampler (see docu-
mentation of emcee for details).

• mcmc_iters (int) – The number of iterations of the MCMC chain for each s steps.

84 Chapter 3. API Reference

PyRoss, Release 1.0.0

• nprocesses (int) – The number of processes passed to the emcee MCMC sampler. By
default, the number of physical cores is used.

• initial_samples (int) – Compute initial_samples * npopulation independent sam-
ples as the result for s = 0.

• verbose (bool) – If true, this function displays the progress of each MCMC iteration in
addition to basic progress information.

• extend_step_list (list of float) – Extends the result of an earlier run of this
function if this argument and extend_sampler_list are provided.

• extend_sampler_list (list of emcee.EnsembleSampler) – Extends the
result of an earlier run of this function if this argument and extend_step_list are provided.

Returns

• step_list (list of float) – The steps s for which p_s has been sampled from (including 0).
Always in ascending order.

• sampler_list (list) – The list of emcee.EnsembleSamplers (and an array of prior samples at
0).

pyross.evidence.evidence_path_sampling_process_result(logl, prior, ndim, step_list,
sampler_list, burn_in=0,
nprocesses=0)

Compute the evidence estimate for the result of pyross.evidence.evidence_path_sampling.

Parameters

• logl – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• prior – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• ndim – Input from pyross.evidence.get_parameters or py-
ross.evidence.latent_get_parameters.

• step_list (list of float) – Output of pyross.evidence.evidence_path_sampling.
The steps s for which p_s has been sampled from (including 0). Always in ascending order.

• sampler_list (list) – Output of pyross.evidence.evidence_path_sampling. The list of
emcee.EnsembleSamplers (and an array of prior samples at 0).

• burn_in (float or np.array) – The number of initial samples that are discarded
before computing the Monte Carlo average.

• nprocesses (int) – The number of processes used to compute the prior likelihood. By
default, the number of physical cores is used.

Returns

• log_evidence (float) – The estimate of the log evidence.

• vals (list of float) – The Monte Carlo average of the log-likelihood for each s s step_list.

pyross.evidence.generate_traceplot(sampler, dims=None)
Generate a traceplot for an emcee.EnsembleSampler.

Parameters

• sampler (emcee.EnsembleSampler) – The sampler to plot the traceplot for.

• dims (list of int, optional) – Select the dimensions that are plotted. By default,
all dimensions are selected.

3.8. Evidence 85

PyRoss, Release 1.0.0

3.9 TSI

Time since infection models

3.9.1 Simulator

86 Chapter 3. API Reference

Python Module Index

p
pyross.evidence, 82

87

PyRoss, Release 1.0.0

88 Python Module Index

Index

A
A() (pyross.deterministic.CommonMethods method), 18
A() (pyross.stochastic.stochastic_integration method),

28

C
characterise_transient() (py-

ross.contactMatrix method), 72
check_for_event() (py-

ross.stochastic.stochastic_integration method),
28

CommonMethods (class in pyross.deterministic), 18
compute_cess() (in module pyross.evidence), 83
compute_ess() (in module pyross.evidence), 83
constant_contactMatrix() (py-

ross.contactMatrix.ContactMatrixFunction
method), 70

ContactMatrixFunction (class in py-
ross.contactMatrix), 70

control_integration (class in pyross.control), 66

E
E() (pyross.deterministic.CommonMethods method), 18
E() (pyross.stochastic.stochastic_integration method),

28
evidence_laplace() (pyross.inference.SIR_type

method), 33
evidence_path_sampling() (in module py-

ross.evidence), 84
evidence_path_sampling_process_result()

(in module pyross.evidence), 85
evidence_smc() (in module pyross.evidence), 83

F
fill_params_dict() (pyross.inference.SIR_type

method), 34
FIM() (pyross.inference.SIR_type method), 31
FIM_det() (pyross.inference.SIR_type method), 32

G
generate_traceplot() (in module py-

ross.evidence), 85
get_individual_contactMatrices() (py-

ross.contactMatrix.ContactMatrixFunction
method), 70

get_mean_inits() (pyross.inference.SIR_type
method), 34

get_parameters() (in module pyross.evidence), 82

H
hessian() (pyross.inference.SIR_type method), 34

I
I() (pyross.deterministic.CommonMethods method), 18
I() (pyross.stochastic.stochastic_integration method),

28
Ia() (pyross.deterministic.CommonMethods method),

19
Ia() (pyross.stochastic.stochastic_integration method),

28
infer() (pyross.inference.SIR_type method), 35
infer_control() (pyross.inference.SIR_type

method), 37
infer_mcmc() (pyross.inference.SIR_type method),

37
infer_mcmc_process_result() (py-

ross.inference.SIR_type method), 39
infer_nested_sampling() (py-

ross.inference.SIR_type method), 39
infer_nested_sampling_process_result()

(pyross.inference.SIR_type method), 40
infer_parameters() (pyross.inference.SIR_type

method), 41
integrate() (pyross.inference.SIR_type method), 41
intervention_custom_temporal() (py-

ross.contactMatrix.ContactMatrixFunction
method), 71

89

PyRoss, Release 1.0.0

interventions_temporal() (py-
ross.contactMatrix.ContactMatrixFunction
method), 71

interventions_threshold() (py-
ross.contactMatrix.ContactMatrixFunction
method), 71

Is() (pyross.deterministic.CommonMethods method),
19

Is() (pyross.stochastic.stochastic_integration method),
28

L
latent_evidence_laplace() (py-

ross.inference.SIR_type method), 43
latent_FIM() (pyross.inference.SIR_type method),

41
latent_FIM_det() (pyross.inference.SIR_type

method), 42
latent_get_parameters() (in module py-

ross.evidence), 82
latent_hessian() (pyross.inference.SIR_type

method), 44
latent_infer() (pyross.inference.SIR_type

method), 45
latent_infer_control() (py-

ross.inference.SIR_type method), 48
latent_infer_mcmc() (pyross.inference.SIR_type

method), 48
latent_infer_mcmc_process_result()

(pyross.inference.SIR_type method), 49
latent_infer_nested_sampling() (py-

ross.inference.SIR_type method), 50
latent_infer_nested_sampling_process_result()

(pyross.inference.SIR_type method), 51
latent_infer_parameters() (py-

ross.inference.SIR_type method), 52
latent_param_slice() (pyross.inference.SIR_type

method), 52

M
mcmc_inference() (pyross.inference.SIR_type

method), 53
mcmc_inference_process_result() (py-

ross.inference.SIR_type method), 53
mcmc_latent_inference() (py-

ross.inference.SIR_type method), 53
mcmc_latent_inference_process_result()

(pyross.inference.SIR_type method), 53
minus_logp_red() (pyross.inference.SIR_type

method), 54
Model (class in pyross.deterministic), 7
Model (class in pyross.inference), 59
Model (class in pyross.stochastic), 20

model_class_data() (pyross.deterministic.Model
method), 8

model_class_data() (pyross.deterministic.SppQ
method), 10

model_class_data() (pyross.stochastic.Model
method), 21

model_class_data() (pyross.stochastic.SppQ
method), 23

N
nested_sampling_inference() (py-

ross.inference.SIR_type method), 54
nested_sampling_inference_process_result()

(pyross.inference.SIR_type method), 54
nested_sampling_latent_inference()

(pyross.inference.SIR_type method), 54
nested_sampling_latent_inference_process_result()

(pyross.inference.SIR_type method), 54

O
obtain_minus_log_p() (pyross.inference.SIR_type

method), 55

P
pyross.evidence (module), 82

R
R() (pyross.deterministic.CommonMethods method), 19
R() (pyross.stochastic.stochastic_integration method),

28
resample() (in module pyross.evidence), 83
robustness() (pyross.inference.SIR_type method),

55

S
S() (pyross.deterministic.CommonMethods method), 19
S() (pyross.stochastic.stochastic_integration method),

28
sample_gaussian() (pyross.inference.SIR_type

method), 56
sample_gaussian_latent() (py-

ross.inference.SIR_type method), 56
sample_latent() (pyross.inference.SIR_type

method), 57
SEAIRQ (class in pyross.control), 69
SEAIRQ (class in pyross.deterministic), 16
SEAIRQ (class in pyross.forecast), 78
SEAIRQ (class in pyross.inference), 64
SEAIRQ (class in pyross.stochastic), 26
SEAIRQ_latent (class in pyross.forecast), 80
SEAIRQ_testing (class in pyross.stochastic), 27
SEIR (class in pyross.control), 68
SEIR (class in pyross.deterministic), 14

90 Index

PyRoss, Release 1.0.0

SEIR (class in pyross.forecast), 75
SEIR (class in pyross.inference), 63
SEIR (class in pyross.stochastic), 26
SEIR_latent (class in pyross.forecast), 77
SEkIkR (class in pyross.control), 68
SEkIkR (class in pyross.deterministic), 15
sensitivity() (pyross.inference.SIR_type method),

58
set_contact_matrix() (pyross.inference.SIR_type

method), 58
set_det_method() (pyross.inference.SIR_type

method), 58
set_det_model() (pyross.inference.SIR_type

method), 58
set_lyapunov_method() (py-

ross.inference.SIR_type method), 59
set_params() (pyross.inference.SIR_type method),

59
SIkR (class in pyross.control), 68
SIkR (class in pyross.deterministic), 13
SIkR (class in pyross.stochastic), 25
simulate() (pyross.control.SEAIRQ method), 69
simulate() (pyross.control.SEIR method), 68
simulate() (pyross.control.SEkIkR method), 69
simulate() (pyross.control.SIkR method), 68
simulate() (pyross.control.SIR method), 67
simulate() (pyross.deterministic.Model method), 8
simulate() (pyross.deterministic.SEAIRQ method),

17
simulate() (pyross.deterministic.SEIR method), 15
simulate() (pyross.deterministic.SEkIkR method), 16
simulate() (pyross.deterministic.SIkR method), 13
simulate() (pyross.deterministic.SIR method), 12
simulate() (pyross.deterministic.SppQ method), 10
simulate() (pyross.forecast.SEAIRQ method), 79
simulate() (pyross.forecast.SEAIRQ_latent method),

80
simulate() (pyross.forecast.SEIR method), 76
simulate() (pyross.forecast.SEIR_latent method), 77
simulate() (pyross.forecast.SIR method), 73
simulate() (pyross.forecast.SIR_latent method), 74
simulate() (pyross.hybrid.SIR method), 30
simulate() (pyross.stochastic.Model method), 21
simulate() (pyross.stochastic.SIR method), 24
simulate() (pyross.stochastic.SppQ method), 23
simulate_deterministic() (py-

ross.control.control_integration method),
66

simulate_gillespie() (py-
ross.stochastic.stochastic_integration method),
28

simulate_tau_leaping() (py-
ross.stochastic.stochastic_integration method),
29

simulator() (pyross.deterministic.CommonMethods
method), 19

SIR (class in pyross.control), 67
SIR (class in pyross.deterministic), 11
SIR (class in pyross.forecast), 72
SIR (class in pyross.hybrid), 30
SIR (class in pyross.inference), 62
SIR (class in pyross.stochastic), 24
SIR_latent (class in pyross.forecast), 74
SIR_type (class in pyross.inference), 31
SpatialContactMatrix (class in py-

ross.contactMatrix), 72
Spp (class in pyross.deterministic), 9
Spp (class in pyross.inference), 60
Spp (class in pyross.stochastic), 21
SppQ (class in pyross.deterministic), 9
SppQ (class in pyross.inference), 65
SppQ (class in pyross.stochastic), 22
stochastic_integration (class in py-

ross.stochastic), 28
Sx() (pyross.deterministic.CommonMethods method),

19
Sx() (pyross.stochastic.stochastic_integration method),

28

Index 91

	Installation
	Tutorial examples
	API Reference
	Python Module Index
	Index

